Journal of Synthetic Crystals, Volume. 51, Issue 7, 1300(2022)
Advances in Chemical Vapor Deposition Equipment Used for SiC Epitaxy
[1] [1] CASADY J B, JOHNSON R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review[J]. Solid-State Electronics, 1996, 39(10): 1409-1422.
[2] [2] MORKO H, STRITE S, GAO G B, et al. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398.
[3] [3] EDDY C R Jr, GASKILL D K. Silicon carbide as a platform for power electronics[J]. Science, 2009, 324(5933): 1398-1400.
[4] [4] LEE T H, BHUNIA S, MEHREGANY M. Electromechanical computing at 500 ℃ with silicon carbide[J]. Science, 2010, 329(5997): 1316-1318.
[7] [7] NISHINO S, HAZUKI Y, MATSUNAMI H, et al. Chemical vapor deposition of single crystalline β- SiC films on silicon substrate with sputtered intermediate layer [J]. Journal of The Electrochemical Society, 1980, 127 (12): 2674-2680.
[8] [8] NISHINO S, POWELL J A, WILL H A. Production of large-area single-crystal wafers of cubic SiC for semiconductor devices[J]. Applied Physics Letters, 1983, 42(5): 460-462.
[9] [9] TANAKA S, KERN R S, DAVIS R F. Effects of gas flow ratio on silicon carbide thin film growth mode and polytype formation during gas-source molecular beam epitaxy[J]. Applied Physics Letters, 1994, 65(22): 2851-2853.
[10] [10] SUN Y, AYABE T, MIYASATO T. Influence of SiC cover layer of Si substrate on properties of cubic SiC films prepared by hydrogen plasma sputtering[J]. Japanese Journal of Applied Physics, 1999, 38(Part 2, No. 7A): L714-L716.
[11] [11] RIMAI L, AGER R, LOGOTHETIS E M, et al. Preparation of oriented silicon carbide films by laser ablation of ceramic silicon carbide targets[J]. Applied Physics Letters, 1991, 59(18): 2266-2268.
[12] [12] ZEHNDER T, BLATTER A, BCHLI A. SiC films prepared by pulsed excimer laser deposition[J]. Thin Solid Films, 1994, 241(1/2): 138-141.
[13] [13] WANG Y X, WEN J, GUO Z, et al. The preparation of single-crystal 4H-SiC film by pulsed XeCl laser deposition[J]. Thin Solid Films, 1999, 338(1/2): 93-99.
[16] [16] KURODA N, SHIBAHARA K, YOO W, et al. Step-controlled VPE growth of SiC single crystals at low temperatures[C]//Extended Abstracts of the 1987 Conference on Solid State Devices and Materials. August 25-27, 1987. Nippon Toshi Center, Tokyo, Japan. The Japan Society of Applied Physics, 1987.
[17] [17] UEDA T, NISHINO H, MATSUNAMI H. Crystal growth of SiC by step-controlled epitaxy[J]. Journal of Crystal Growth, 1990, 104(3): 695-700.
[18] [18] KONG H, KIM H J, EDMOND J A, et al. Growth, doping, device development and characterization of CVD beta-SiC epilayers on Si(100) and alpha-SiC(0001)[J]. MRS Proceedings, 1987, 97: 233.
[19] [19] LA VIA F, GALVAGNO G, FOTI G, et al. 4H SiC epitaxial growth with chlorine addition[J]. Chemical Vapor Deposition, 2006, 12(8/9): 509-515.
[20] [20] KIMOTO T, NISHINO H, YOO W S, et al. Growth mechanism of 6H-SiC in step-controlled epitaxy[J]. Journal of Applied Physics, 1993, 73(2): 726-732.
[21] [21] ITO M, STORASTA L, TSUCHIDA H. Development of a high rate 4H-SiC epitaxial growth technique achieving large-area uniformity[J]. Materials Science Forum, 2008, 600/601/602/603: 111-114.
[22] [22] KIMOTO T, COOPER J A. Fundamentals of silicon carbide technology[M]. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2014.
[23] [23] LEONE S, PEDERSEN H, BEYER F C, et al. Chloride-based CVD of 4H-SiC at high growth rates on substrates with different off-angles[J]. Materials Science Forum, 2012, 717/718/719/720: 113-116.
[24] [24] LEONE S, HENRY A, JANZN E, et al. Epitaxial growth of SiC with chlorinated precursors on different off-angle substrates[J]. Journal of Crystal Growth, 2013, 362: 170-173.
[25] [25] CHOKAWA K, DAIGO Y, MIZUSHIMA I, et al. First-principles and thermodynamic analysis for gas phase reactions and structures of the SiC(0001) surface under conventional CVD and Halide CVD environments[J]. Japanese Journal of Applied Physics, 2021, 60(8): 085503.
[26] [26] HENRY A, LEONE S, BEYER F C, et al. SiC epitaxy growth using chloride-based CVD[J]. Physica B: Condensed Matter, 2012, 407(10): 1467-1471.
[27] [27] LEONE S, MAUCERI M, PISTONE G, et al. SiC-4H epitaxial layer growth using trichlorosilane (TCS) as silicon precursor[J]. Materials Science Forum, 2006, 527/528/529: 179-182.
[28] [28] PEDERSEN H, LEONE S, HENRY A, et al. Very high growth rate of 4H-SiC using MTS as chloride-based precursor[J]. Materials Science Forum, 2008, 600/601/602/603: 115-118.
[29] [29] KOTAMRAJU S P, KRISHNAN B, KOSHKA Y. Epitaxial growth of 4H-SiC with high growth rate using CH3Cl and SiCl4 chlorinated growth precursors[J]. Materials Science Forum, 2010, 645/646/647/648: 103-106.
[30] [30] DEIVENDRAN B, SHINDE V M, KUMAR H, et al. 3D Modeling and optimization of SiC deposition from CH3SiCl3/H2 in a commercial hot wall reactor[J]. Journal of Crystal Growth, 2021, 554: 125944.
[31] [31] MACMILLAN M F, LOBODA M J, CHUNG G Y, et al. Homoepitaxial growth of 4H-SiC using a chlorosilane silicon precursor[J]. Materials Science Forum, 2006, 527/528/529: 175-178.
[32] [32] NuFlare Technology Inc. EPIREVOTM S6 6″ single-wafer SiC epitaxial reactor[EB/OL]. http://www.nuflare.co.jp/english/products/epitaxial/EPIREVO_S6.html.
[33] [33] AIXTRON (Group), AIX 2800G4-TM (IC2) Brochure [EB/OL]. https://www.aixtron.com/en/products/AIX%202800G4-TM_p89.
[34] [34] BURK A A Jr, ROWLAND L B. Homoepitaxial VPE growth of SiC active layers[J]. Physica Status Solidi (b), 1997, 202(1): 263-279.
[35] [35] KIMOTO T, ITOH A, MATSUNAMI H. Step-controlled epitaxial growth of high-quality SiC layers[J]. Physica Status Solidi (b), 1997, 202(1): 247-262.
[36] [36] RUPP R, MAKAROV Y N, BEHNER H, et al. Silicon carbide epitaxy in a vertical CVD reactor: experimental results and numerical process simulation[J]. Physica Status Solidi (b), 1997, 202(1): 281-304.
[37] [37] KORDINA O, HALLIN C, HENRY A, et al. Growth of SiC by “hot-wall” CVD and HTCVD[J]. Physica Status Solidi (b), 1997, 202(1): 321-334.
[38] [38] HENRY A, UL HASSAN J, P BERGMAN J, et al. Thick silicon carbide homoepitaxial layers grown by CVD techniques[J]. Chemical Vapor Deposition, 2006, 12(8/9): 475-482.
[39] [39] NISHIZAWA S, PONS M. Growth and doping modeling of SiC-CVD in a horizontal hot-wall reactor[J]. Chemical Vapor Deposition, 2006, 12(8/9): 516-522.
[40] [40] VIA F L, IZZO G, MAUCERI M, et al. 4H-SiC epitaxial layer growth by trichlorosilane (TCS)[J]. Journal of Crystal Growth, 2008, 311(1): 107-113.
[41] [41] KIMOTO T, GAN F, HIYOSHI T, et al. Defect control in growth and processing of 4H-SiC for power device applications[J]. Materials Science Forum, 2010, 645/646/647/648: 645-650.
[42] [42] BURK A A, O'LOUGHLIN M J, PAISLEY M J, et al. Large area SiC epitaxial layer growth in a warm-wall planetary VPE reactor[M]//Materials Science Forum. Stafa: Trans Tech Publications Ltd., 2005: 137-140.
[43] [43] THOMAS B, HECHT C, STEIN R A, et al. Challenges in large-area multi-wafer SiC epitaxy for production needs[J]. Materials Science Forum, 2006, 527/528/529: 135-140.
[49] [49] MITROVIC B, GURARY A, KADINSKI L. On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters[J]. Journal of Crystal Growth, 2006, 287(2): 656-663.
[51] [51] DAIGO Y, WATANABE T, ISHIGURO A, et al. Impact of precise temperature control for 4H-SiC epitaxy on large diameter wafers[C]//2020 International Symposium on Semiconductor Manufacturing (ISSM). December 15-16, 2020, Tokyo, Japan. IEEE, 2020: 1-4.
Get Citation
Copy Citation Text
HAN Yuebin, PU Yong, SHI Jianxin. Advances in Chemical Vapor Deposition Equipment Used for SiC Epitaxy[J]. Journal of Synthetic Crystals, 2022, 51(7): 1300
Category:
Received: Apr. 7, 2022
Accepted: --
Published Online: Aug. 12, 2022
The Author Email: Yuebin HAN (hanshan@sicentury.com)
CSTR:32186.14.