Chinese Journal of Lasers, Volume. 43, Issue 5, 516001(2016)

Research on Temperature Distribution of Deep Ultraviolet Lithographic Projection Objective

Yao Changcheng1,2、* and Gong Yan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(16)

    [1] [1] Chen Xunan, Luo Xiangang, Lin Wumei, et al.. Design of 193 nm projection lithography lens[J]. Microfabrication Technology, 2001, (2): 24-26.

    [2] [2] Rigolli P, Capetti G, De Chiara E, et al.. High-order distortion effects induced by extreme off-axis illuminations at hyper NA lithography[C]. SPIE, 2009, 7274: 72742T.

    [3] [3] Lucas K, Montgomery P, Litt L C, et al.. Process, design and optical proximity correction requirements for the 65 nm device generation[C]. SPIE, 2003, 5040: 408-419.

    [4] [4] Flagello D G, Geh B, Socha R, et al.. Understanding illumination effects for control of optical proximity effects (OPE)[C]. SPIE, 2008, 6924: 69241U.

    [5] [5] Chiou J Y, Chen M F, Liu C L, et al.. Lens temperature and performance correlation analysis[C]. SPIE, 1999, 3892: 372-376.

    [6] [6] Zeng Yi. Thermal structure design of fine water temperature control system for the photo-etching machine[D]. Chengdu: University of Electronic Science and Technology of China, 2012: 8.

    [7] [7] Nakashima T, Ohmura Y, Ogata T, et al.. Thermal aberration control in projection lens[C]. SPIE, 2008, 6924: 69241V.

    [8] [8] Uehara Y, Matsuyama T, Nakashima T, et al.. Thermal aberration control for low k1 lithography[C]. SPIE, 2007, 6520: 65202V.

    [9] [9] Chen H, Yang H, Yu X, et al.. Simulated and experimental study of laser-beam-induced thermal aberrations in precision optical systems[J]. Applied Optics, 2013, 52(18): 4370-4376.

    [10] [10] Moon E E, Chandorkar S A, Sreenivasan S V, et al.. Thermally controlled alignment for wafer-scale lithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2013, 12(3): 031109.

    [11] [11] Chen Hua, Su Dongqi, Sui Yongxin, et al.. Active compensation of thermal aberrations in lithographic projection lens[J]. Acta Optica Sinica, 2014, 34(8): 0811001.

    [12] [12] Fukuhara K, Mimotogi A, Kono T, et al.. Solutions with precise prediction for thermal aberration error in low-k1 immersion lithography[C]. SPIE, 2013, 8683: 86830U.

    [13] [13] Luo Cong. Simulation research of thermal aberration on the DUV lithography projection objective[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015: 42-43.

    [14] [14] Shen Yiping. Investigation on thermo/opto/mechanical analysis methods of the projection lithographic lens[D]. Wuhan: Huazhong University of Science and Technology, 2014: 39.

    [16] [16] Hu Hanping. Theory of heat transfer[M]. Hefei: Press of University of Science and Technology of China, 2010: 102-103.

    Tools

    Get Citation

    Copy Citation Text

    Yao Changcheng, Gong Yan. Research on Temperature Distribution of Deep Ultraviolet Lithographic Projection Objective[J]. Chinese Journal of Lasers, 2016, 43(5): 516001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Dec. 29, 2015

    Accepted: --

    Published Online: May. 4, 2016

    The Author Email: Changcheng Yao (yaochangcheng18@126.com)

    DOI:10.3788/cjl201643.0516001

    Topics