Laser & Optoelectronics Progress, Volume. 62, Issue 18, 1817009(2025)
Advances in Head-Mounted Miniaturized Microscopes for Brain Science Research (Invited)
[2] Aharoni D, Khakh B S, Silva A J et al. All the light that we can see: a new era in miniaturized microscopy[J]. Nature Methods, 16, 11-13(2018).
[4] Wei Z Q, Lin B J, Chen T W et al. A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology[J]. PLoS Computational Biology, 16, e1008198(2020).
[7] Mau W, Sullivan D W, Kinsky N R et al. The same hippocampal CA1 population simultaneously codes temporal information over multiple timescales[J]. Current Biology, 28, 1499-1508(2018).
[9] Malvaut S, Constantinescu V S, Dehez H et al. Deciphering brain function by miniaturized fluorescence microscopy in freely behaving animals[J]. Frontiers in Neuroscience, 14, 819(2020).
[10] Newman J P, Zhang J, Cuevas-López A et al. ONIX: a unified open-source platform for multimodal neural recording and perturbation during naturalistic behavior[J]. Nature Methods, 22, 187-192(2024).
[11] Helmchen F, Fee M S, Tank D W et al. A miniature head-mounted two-photon microscope high-resolution brain imaging in freely moving animals[J]. Neuron, 31, 903-912(2001).
[13] Svoboda K, Denk W, Kleinfeld D et al. In vivo dendritic calcium dynamics in neocortical pyramidal neurons[J]. Nature, 385, 161-165(1997).
[15] Chen S Y, Wang Z C, Zhang D et al. Miniature fluorescence microscopy for imaging brain activity in freely-behaving animals[J]. Neuroscience Bulletin, 36, 1182-1190(2020).
[17] Li R J, Wang M, Yao J W et al. Two-photon functional imaging of the auditory cortex in behaving mice: from neural networks to single spines[J]. Frontiers in Neural Circuits, 12, 33(2018).
[19] Dana H, Sun Y, Mohar B et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments[J]. Nature Methods, 16, 649-657(2019).
[23] Wang X M, Yu A P, Wang G B et al. Application and outlook of channelrhodopsin-2 in system neuroscience[J]. Chinese Bulletin of Life Sciences, 29, 797-803(2017).
[24] Fu Q, Zhang Z M, Zhao S N et al. Research progress of miniature head-mounted single photon fluorescence microscopic imaging technique[J]. Chinese Optics, 16, 1010-1021(2023).
[26] Murayama M, Pérez-Garci E, Lüscher H R et al. Fiberoptic system for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats[J]. Journal of Neurophysiology, 98, 1791-1805(2007).
[27] Helmchen F. Miniaturization of fluorescence microscopes using fibre optics[J]. Experimental Physiology, 87, 737-745(2002).
[29] Piyawattanametha W, Barretto R P J, Ko T H et al. Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror[J]. Optics Letters, 31, 2018-2020(2006).
[40] Xue F, Li F, Zhang K M et al. Multi-region calcium imaging in freely behaving mice with ultra-compact head-mounted fluorescence microscopes[J]. National Science Review, 11, nwad294(2023).
[41] Ziv Y, Ghosh K K. Miniature microscopes for large-scale imaging of neuronal activity in freely behaving rodents[J]. Current Opinion in Neurobiology, 32, 141-147(2015).
[47] Zhao P P, Guo C L, Xie M et al. MiniXL: an open-source, large field-of-view epifluorescence miniature microscope for mice capable of single-cell resolution and multi-brain region imaging[J]. Science Advances, 11, eads4995(2025).
[48] Zhang Y L, Yuan L K, Zhu Q Y et al. A miniaturized mesoscope for the large-scale single-neuron-resolved imaging of neuronal activity in freely behaving mice[J]. Nature Biomedical Engineering, 8, 754-774(2024).
[58] Piston D W. Imaging living cells and tissues by two-photon excitation microscopy[J]. Trends in Cell Biology, 9, 66-69(1999).
[63] Ozbay B N, Futia G L, Ma M et al. Miniature multiphoton microscopes for recording neural activity in freely moving animals[M]. All-optical methods to study neuronal function, 191, 187-230(2023).
[65] Zhang Y Y, Akins M L, Murari K et al. A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 12878-12883(2012).
[67] Wu Y C, Leng Y X, Xi J F et al. Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues[J]. Optics Express, 17, 7907-7915(2009).
[71] Klioutchnikov A, Wallace D J, Sawinski J et al. A three-photon head-mounted microscope for imaging all layers of visual cortex in freely moving mice[J]. Nature Methods, 20, 610-616(2022).
[74] Yashiro H, Nakahara I, Funabiki K et al. Micro-endoscopic system for functional assessment of neural circuits in deep brain regions: simultaneous optical and electrical recordings of auditory responses in mouse’s inferior colliculus[J]. Neuroscience Research, 119, 61-69(2017).
[75] Yen W W, Leman D P, Clevenger J R et al. a miniscope for multiplexed single-photon imaging of two spectrally distinct fluorescent reporters in freely-behaving animals[C], 1(2019).
[77] Inoue M, Takeuchi A, Manita S et al. Rational engineering of XCaMPs, a multicolor GECI suite for in vivo imaging of complex brain circuit dynamics[J]. Cell, 177, 1346-1360(2019).
[78] Chen N B, Xu Z Q, Song Z et al. Simultaneous head-mounted imaging of neural and hemodynamic activities at high spatiotemporal resolution in freely behaving mice[J]. Science Advances, 11, eadu1153(2025).
[79] O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat[J]. Brain Research, 34, 171-175(1971).
[80] Zhao Z, Zeng F, Wang H B et al. Encoding of social novelty by sparse GABAergic neural ensembles in the prelimbic cortex[J]. Science Advances, 8, eabo4884(2022).
[82] Zimmerman C A, Huey E L, Ahn J S et al. A gut-to-brain signal of fluid osmolarity controls thirst satiation[J]. Nature, 568, 98-102(2019).
[83] Gong R, Xu S J, Hermundstad A et al. Hindbrain double-negative feedback mediates palatability-guided food and water consumption[J]. Cell, 182, 1589-1605(2020).
[85] Sun Y, Blanco-Centurion C, Bendell E et al. Activity dynamics of amygdala GABAergic neurons during cataplexy of narcolepsy[J]. eLife, 8, e48311(2019).
[86] Zhou H, Neville K R, Goldstein N et al. Cholinergic modulation of hippocampal calcium activity across the sleep-wake cycle[J]. eLife, 8, e39777(2019).
[87] Kumar D, Koyanagi I, Carrier-Ruiz A et al. Sparse activity of hippocampal adult-born neurons during REM sleep is necessary for memory consolidation[J]. Neuron, 107, 552-565(2020).
[88] Ghandour K, Haga T, Ohkawa N et al. Parallel processing of past and future memories through reactivation and synaptic plasticity mechanisms during sleep[J]. Nature Communications, 16, 3618(2025).
[89] Acuña M A, Kasanetz F, de Luna P et al. Principles of nociceptive coding in the anterior cingulate cortex[J]. Proceedings of the National Academy of Sciences of the United States of America, 120, e2212394120(2023).
[90] Simoes de Souza F M, Williamson R, McCullough C et al. Miniscope recording calcium signals at hippocampus of mice navigating an odor plume[J]. Journal of Visualized Experiments, 20, 211(2024).
[91] Hur S W, Safaryan K, Yang L et al. Correlated signatures of social behavior in cerebellum and anterior cingulate cortex[J]. eLife, 12, RP88439(2024).
[93] Murano T, Nakajima R, Nakao A et al. Multiple types of navigational information are independently encoded in the population activities of the dentate gyrus neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 119, e2106830119(2022).
[95] Gonzalez W G, Zhang H W, Harutyunyan A et al. Persistence of neuronal representations through time and damage in the hippocampus[J]. Science, 365, 821-825(2019).
[96] Esparza J, Quintanilla J P, Cid E et al. Cell-type-specific manifold analysis discloses independent geometric transformations in the hippocampal spatial code[J]. Neuron, 113, 1098-1109(2025).
[97] Lee H S, Han J H. Successful in vivo calcium imaging with a head-mount miniaturized microscope in the amygdala of freely behaving mouse[J]. Journal of Visualized Experiments, 26, 162(2020).
[98] Nestler E J, Hyman S E. Animal models of neuropsychiatric disorders[J]. Nature Neuroscience, 13, 1161-1169(2010).
[99] Knowles J K, Rajadas J, Nguyen T V et al. The p75 neurotrophin receptor promotes amyloid-β(1-42)-induced neuritic dystrophy in vitro and in vivo[J]. The Journal of Neuroscience, 29, 10627-10637(2009).
[100] Sterniczuk R, Antle M C, Laferla F M et al. Characterization of the 3xTg-AD mouse model of Alzheimer’s disease: part 2. Behavioral and cognitive changes[J]. Brain Research, 1348, 149-155(2010).
[101] Filali M, Lalonde R, Theriault P et al. Cognitive and non-cognitive behaviors in the triple transgenic mouse model of Alzheimer’s disease expressing mutated APP, PS1, and Mapt (3xTg-AD)[J]. Behavioural Brain Research, 234, 334-342(2012).
[102] Youmans K L, Tai L M, Nwabuisi-Heath E et al. APOE4-specific changes in Aβ accumulation in a new transgenic mouse model of Alzheimer disease[J]. Journal of Biological Chemistry, 287, 41774-41786(2012).
[103] Zhang H, Chen L J, Johnston K G et al. Degenerate mapping of environmental location presages deficits in object-location encoding and memory in the 5xFAD mouse model for Alzheimer’s disease[J]. Neurobiology of Disease, 176, 105939(2023).
[104] Larosa A, Zhang T R, Wong A S et al. Diminished social memory and hippocampal correlates of social interactions in chronic social defeat stress susceptibility[J]. Biological Psychiatry Global Open Science, 5, 100455(2025).
[105] Contestabile A, Kojovic N, Casarotto G et al. Translational research approach to social orienting deficits in autism: the role of superior colliculus-ventral tegmental pathway[J]. Molecular Psychiatry, 30, 3729-3739(2025).
[106] Werner C T, Williams C J, Fermelia M R et al. Circuit mechanisms of neurodegenerative diseases: a new frontier with miniature fluorescence microscopy[J]. Frontiers in Neuroscience, 13, 1174(2019).
[107] Ge Y, Chen W L, Axerio-Cilies P et al. NMDARs in cell survival and death: implications in stroke pathogenesis and treatment[J]. Trends in Molecular Medicine, 26, 533-551(2020).
[108] Brailoiu E, Barr J L, Wittorf H N et al. Modulation of the blood-brain barrier by sigma-1R activation[J]. International Journal of Molecular Sciences, 25, 5147(2024).
[109] Sun D C, Unnithan R R, French C. Scopolamine impairs spatial information recorded with “miniscope” calcium imaging in hippocampal place cells[J]. Frontiers in Neuroscience, 15, 640350(2021).
[110] Anikeeva P, Andalman A S, Witten I et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice[J]. Nature Neuroscience, 15, 163-170(2011).
[111] Edward E S, Kouzani A Z, Tye S J. Towards miniaturized closed-loop optogenetic stimulation devices[J]. Journal of Neural Engineering, 15, 021002(2018).
[114] Pashaie R, Baumgartner R, Richner T J et al. Closed-loop optogenetic brain interface[J]. IEEE Transactions on Bio-Medical Engineering, 62, 2327-2337(2015).
[117] Zhao P P, Aharoni D, Golshani P. GRIN lens implantation strategies for in vivo calcium imaging using miniature microscopy[J]. PLoS One, 20, e0323256(2025).
[118] Lu J H, Li C Y, Singh-Alvarado J et al. MIN1PIPE: a miniscope 1-photon-based calcium imaging signal extraction pipeline[J]. Cell Reports, 23, 3673-3684(2018).
[120] Zhang H D, Xu Z Q, Chen N B et al. Simultaneous removal of noise and correction of motion warping in neuron calcium imaging using a pipeline structure of self-supervised deep learning models[J]. Biomedical Optics Express, 15, 4300-4317(2024).
[121] McNulty P, Wu R, Yamaguchi A et al. Closed-loop two-photon functional imaging in a freely moving animal[J]. Nature Communications, 16, 5950(2025).
[122] Schneider S, Lee J H, Mathis M W. Learnable latent embeddings for joint behavioural and neural analysis[J]. Nature, 617, 360-368(2023).
[125] Feshki M, de Koninck Y, Gosselin B. Deep learning empowered Fresnel-based lensless fluorescence microscopy[C], 1-4(2023).
[126] Feshki M, Martel S, De Koninck Y et al. Improving flat fluorescence microscopy in scattering tissue through deep learning strategies[J]. Optics Express, 31, 23008-23026(2023).
[127] Quicke P, Song C C, McKimm E J et al. Single-neuron level one-photon voltage imaging with sparsely targeted genetically encoded voltage indicators[J]. Frontiers in Cellular Neuroscience, 13, 39(2019).
[128] Chen Z, Blair G J, Guo C L. A hardware system for real-time decoding of in vivo calcium imaging data[J]. Elife, 12, e78344(2023).
[129] Lorca-Cámara A, Blot F G C, Accanto N. Recent advances in light patterned optogenetic photo stimulation in freely moving mice[J]. Neurophotonics, 11, S11508(2024).
Get Citation
Copy Citation Text
Baowan Li, Mian Xie, Wenhao Liu, Weisong Zhao, Haoyu Li, Changliang Guo. Advances in Head-Mounted Miniaturized Microscopes for Brain Science Research (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(18): 1817009
Category: Medical Optics and Biotechnology
Received: May. 27, 2025
Accepted: Jul. 15, 2025
Published Online: Sep. 16, 2025
The Author Email: Haoyu Li (lihaoyu@hit.edu.cn), Changliang Guo (changliangguo@pku.edu.cn)
CSTR:32186.14.LOP251328