Laser & Optoelectronics Progress, Volume. 62, Issue 18, 1817009(2025)

Advances in Head-Mounted Miniaturized Microscopes for Brain Science Research (Invited)

Baowan Li1, Mian Xie5, Wenhao Liu1, Weisong Zhao1,6, Haoyu Li1,6、**, and Changliang Guo2,3,4、*
Author Affiliations
  • 1School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang , China
  • 2National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing 100871, China
  • 3Institute of Molecular Medicine, Beijing 100871, China
  • 4State Key Laboratory of Membrane Biology, Beijing 100871, China
  • 5School of Life Sciences, Tsinghua University, Beijing 100084, China
  • 6State Key Laboratory of Space Environment Interation with Matters, Harbin Institute of Technology, Harbin 150028, Heilongjiang , China
  • show less
    Figures & Tables(8)
    Head-mounted miniature light field microscope[51]. (a) Explosion (left) and section (right) diagrams of MiniLFM; (b) examples of MiniLFM PSFs; (c) example of a MiniLFM raw sensor image
    Optical path configuration of micro head-mounted device for maximizing scattered fluorescence collection[72].(a) Schematic of m3PM headpiece; (b) optical layout of m3PM headpiece
    Head-mounted dual-modal imaging platform[78]. (a) Schematic of simultaneous imaging of vascular oxygen metabolism and neural Ca2+ dynamics in freely moving mice; (b) design of the miniature microscope; (c) photograph of a freely moving mouse wearing the head-mounted dual-modal microscope; (d) FOV measurement by imaging a grid array with 100 μm grid spacing
    Applications of head-mounted miniscope in neuroscience research.(a) Causal relationship analysis between natural behaviors and neural activity; (b) in vivo pathological mechanism studies in neural disease models; (c) drug screening and pharmacological evaluation; (d) development of neural signal-driven closed-loop brain-computer interfaces
    Wireless calcium imaging and spatial movement patterns in freely flying bats[94]. (a) Schematic of bats carrying a wireless miniature microscope system during flight; (b) GRIN lens was implanted above dorsal CA1; (c) two example maximum intensity projections from one bat, separated by 3 days; (d) flight room schematic and experimental paradigm; (e) representative flight paths across a single session from three different example bats
    Future directions of head-mounted miniaturized microscopes. (a) Wireless data transmission and wireless power supply in head-mounted miniaturized microscopic imaging systems; (b) various types of voltage indicators; (c) deep learning-integrated computational imaging networks; (d) animal behavior analysis via edge computing device NVIDIA Jetson Orin NX and DeepLabCut
    • Table 1. Head-mounted miniature single-photon fluorescence microscope

      View table

      Table 1. Head-mounted miniature single-photon fluorescence microscope

      TypicalMiniature microscopeWeightField of view /μmNAMagnificationResolutionFrame rateObjectiveIndicatorYear
      Basic imaging functionalityIntegrated microscope321.9 g600 μm×800 μm0.45~5.0×2.5 μm36‒100 HzGRIN lensGCaMP32011
      UCLA miniscope V4342.6 g1000 μm120 HzAchromatic lensGCaMP6f2016
      CHendoscope374.5 g500 μm×500 μm20 HzGRIN lensGCaMP6f2018
      NIDA miniscope362.4 g1.1 mm×1.1 mmSingle-cell10 HzAspherical lensGCaMP6s2016
      NINscope381.6 g786 μm×502 μm~4.6×Cellular30 HzGRIN lensGCaMP6f2020
      Featherscope391.0 g1.0 mm×1.0 mm4‒7 μmGRIN lensGCaMP6f2023
      TINIscope400.43 g450 μm×450 μm2.4×Cellular40 HzGRIN lens

      GCaMP6s

      GCaMP6f

      2024
      Large field of viewcScope4435 g7.8 mm×4 mm0.15‒0.220.7×14 μm60 HzTandem lensGCaMP6f2018
      Boston miniscope464.2–4.5 g2.7 mm×1.8 mm0.15∼1.3×7 μm~5‒10 HzGCaMP6f2021
      Kiloscope391.4 g4.8 mm×3.6 mm∼1×∼10 μmGRIN lensGCaMP7f2020
      MiniLFOV4513.9 g3.6 mm×2.7 mm0.251.56×3.5 μm

      11 Hz

      23 Hz

      GRIN lens

      GCaMP6f

      GCaMP7s

      2023
      SOMM482.5 g3.6 mm×3.6 mm0.3~1×4 μm16 HzGCaMP6f2024
      MiniXL473.5 g3.5 mm diameter0.121.194.4 μm23 HzGRIN lensGCaMP6f2024
      3D imaging capabilitiesMiniLFM51<4 g700 μm×600 μm×360 μm0.56.0 μm16 HzGRIN lensGCaMP6f2018
      Miniscope3D522.5 g900 μm×700 μm×390 μm2.8 μm40 HzGRIN lens2022
      Focus-tunable microscope491.4 g

      Horizontal 150 μm

      Axial 98 μm

      0.428.7×1.4 μm30‒50 HzTunable Liquid Crystal LensGCaMP6s2020
      SIMscope3D506.7 g

      Horizontal 207 μm

      Axial 220 μm

      0.32.2×1.0 μm/pixel5 HzApochromat Objectives2020
      CM2[5419 g7.3 mm×8.1 mm×2.5 mm~1/2.4×7 μm2020
      Wireless functionalityFinchScope351.8 g600 μm×800 μm0.4530 HzGRIN lensGCaMP6s GCaMP6f2017
      UCLA miniscope wireless344.5 g700 μm×450 μm20 HzGRIN lensGCaMP6f2020
      Wireless miniscope563.9 g500 μm×500 μmSingle cell10 HzAspherical lensGCaMP6s2019
      WScope572.7 g700 μm×450 μm1.8 μm25 HzGRIN lensGCaMP6m2023
    • Table 2. Comparison of technical parameters of head-mounted miniaturized multiphoton fluorescence microscope

      View table

      Table 2. Comparison of technical parameters of head-mounted miniaturized multiphoton fluorescence microscope

      Miniature microscopesWeightField of viewWorking distanceNumerical apertureExcitationFiberScanningSpeedYear
      First two-photon2625 g65 μm>1.5 mm0.8820‒850 nm; sub picosecondSingle-mode optical fiberFiber-tip scanning2 Hz2001
      Fiberscope115.5 g150 μm×150 μm0.7 mm

      Ex=0.9

      Em=0.63

      925 nmLarge-core, high-NA plastic optical fiberFiber scanner10 Hz at 64 pixel ×64 pixel2009
      FHIRM-TPM602.15 g130 μm×130 μm∼0.17 mm0.8920 nm; femtosecondHollow-core photonic crystal fiberMEMS40 Hz at 256 pixel ×256 pixel2017
      FHIRM-TPM 2.0612.45 g420 μm×420 μm×180 μm1 mm

      Ex=0.3

      Em=0.5

      920 nm; femtosecondHollow-core photonic crystal fiberMEMS20 Hz at 256 pixel ×256 pixel2021
      MINI2P622.4 g500 μm×500 μm×240 μm0‒1 mm0.45‒0.5FemtoFiber ultra 920 nm, Toptica, Munich, Germany; 920 nm ±10 nm, 100 fs, 80 MHz, 1.2 WHC-920, K50-060-00, NKT, Copenhagen, Denmark; bandwidth:900‒950 nmMEMS

      15 Hz at

      256 pixel ×256 pixel

      2022
      Three-photon head-mounted microscope705.0 gDiameter of 200 μm1.75 mmEx=0.48 to 0.541320 nm; femtosecondHollow-core photonic bandgap crystal fiberMEMS27.78 Hz at 120 pixel ×120 pixel2020
      Three-photon head-mounted microscope712 g

      Extended z-range configuration: >300 µm & z-range:700 μm;

      high-resolution configuration:~200 µm & z-range:150 μm

      1.1 mmEx=0.41300 nm; femtosecond, -50 fs

      Hollow-core

      fiber

      MEMS10.6 Hz at 273 pixel ×280 pixel2023
      m3PM722.17 g400 μm×400 μm1.75 mm

      Ex=0.65

      Em=0.55

      1300 nm; femtosecondHollow-core anti-resonant fiber Fiber-01, loss: (0.17±0.005) dBm-1 at 1300 nm (mean ± std)MEMS15.93 Hz at 128 pixel ×128 pixel2023
    Tools

    Get Citation

    Copy Citation Text

    Baowan Li, Mian Xie, Wenhao Liu, Weisong Zhao, Haoyu Li, Changliang Guo. Advances in Head-Mounted Miniaturized Microscopes for Brain Science Research (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(18): 1817009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: May. 27, 2025

    Accepted: Jul. 15, 2025

    Published Online: Sep. 16, 2025

    The Author Email: Haoyu Li (lihaoyu@hit.edu.cn), Changliang Guo (changliangguo@pku.edu.cn)

    DOI:10.3788/LOP251328

    CSTR:32186.14.LOP251328

    Topics