Opto-Electronic Engineering, Volume. 52, Issue 2, 240280-1(2025)

Improving the lightweight FCM-YOLOv8n for steel surface defect detection

Liming Liang, Kangquan Chen, Linjun Chen, and Pengwei Long
Author Affiliations
  • School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
  • show less
    References(18)

    [1] Huang S Q, Huang J G. Improved steel defect detection method based on enhanced fusion of RFB and YOLOv5 features[J]. Comput Eng(2024).

    [2] Liang L M, Long P W, Lu B H et al. Improvement of GBS-YOLOv7t for steel surface defect detection[J]. Opto-Electron Eng, 51, 240044(2024).

    [3] Liang L M, Long P W, Feng Y et al. Improving the lightweight VTG-YOLOv7-tiny for steel surface defect detection[J]. Opt Precis Eng, 32, 1227-1240(2024).

    [7] Wang X Q, Gao H B, Jia Z M et al. BL-YOLOv8: an improved road defect detection model based on YOLOv8[J]. Sensors, 23, 8361(2023).

    [8] Zeng S, Yang W Z, Jiao Y Y et al. SCA-YOLO: a new small object detection model for UAV images[J]. Vis Comput, 40, 1787-1803(2024).

    [9] Li G, Shao R, Zhou M L et al. Lightweight industrial products defect detection network based on attention[J]. Comput Eng, 49, 275-283(2023).

    [10] Liu Y, Jiang S X. Steel surface defect detection algorithm based on improved YOLOX[J]. Mod Electron Tech, 47, 131-138(2024).

    [11] Ma D M, Zhu J H. The optimization of YOLOv5 algorithm for detecting surface defects on hot rolled strips[J]. Manuf Technol Mach Tool, 153-160(2024).

    [12] Xu X Y, Shen T, Lv J. Steel Surface Defect Detection Based On Improved YOLOv8 algorithm[J]. Autom Appl, 65, 6-10(2024).

    [13] Chen L W, Fu Y, Gu L et al. Frequency-aware feature fusion for dense image prediction[J]. IEEE Trans Pattern Anal Mach Intell, 46, 10763-10780(2024).

    [17] Yeung C C, Lam K M. Efficient fused-attention model for steel surface defect detection[J]. IEEE Trans Instrum Meas, 71, 2510011(2022).

    Tools

    Get Citation

    Copy Citation Text

    Liming Liang, Kangquan Chen, Linjun Chen, Pengwei Long. Improving the lightweight FCM-YOLOv8n for steel surface defect detection[J]. Opto-Electronic Engineering, 2025, 52(2): 240280-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Nov. 30, 2024

    Accepted: Jan. 6, 2025

    Published Online: Apr. 27, 2025

    The Author Email:

    DOI:10.12086/oee.2025.240280

    Topics