Opto-Electronic Engineering, Volume. 52, Issue 2, 240280-1(2025)

Improving the lightweight FCM-YOLOv8n for steel surface defect detection

Liming Liang, Kangquan Chen, Linjun Chen, and Pengwei Long
Author Affiliations
  • School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
  • show less
    Figures & Tables(13)
    YOLOv8n network structure
    FCM-YOLOv8n network structure
    Frequency-aware feature fusion network structure
    Cc-C2f network structure
    Multi-spectral attention mechanism
    mAP@0.5 training curves
    Comparison of detection performance on the Severstal and NEU-DET datasets
    Comparison of detection performance of different models on the Severstal dataset after data augmentation
    Comparison of detection performance on the GC10-DET dataset
    • Table 1. Comparison experiment between Cc-C2f and C2f

      View table
      View in Article

      Table 1. Comparison experiment between Cc-C2f and C2f

      ModulemAP@0.5/%Par/MFLOPs/GFPS
      C2f75.23.08.1181
      Cc-C2f75.92.66.9161
    • Table 2. Ablation experimental data

      View table
      View in Article

      Table 2. Ablation experimental data

      DatasetFreqFusionCc-C2fMAmAP@0.5/%Par/MFLOPs/GFPS
      Severstal72.93.08.1153
      74.52.87.7156
      73.02.66.9141
      74.13.08.1145
      74.02.56.6145
      75.12.56.6143
      NEU-DET75.23.08.1181
      75.72.87.7188
      75.92.66.9161
      75.93.08.1182
      76.02.56.6154
      76.72.56.6154
    • Table 3. Comparison of detection data from different algorithms

      View table
      View in Article

      Table 3. Comparison of detection data from different algorithms

      DatasetModelmAP@0.5/%Par/MFLOPs/GFPS
      SeverstalYOLOv3-tiny60.212.118.9151
      YOLOv4-tiny55.55.916.197
      YOLOv5n72.62.57.1175
      YOLOv5s72.19.123.8120
      YOLOv6n74.54.211.8153
      YOLOv7-tiny61.56.013.176
      YOLOv8n72.93.08.1153
      YOLOv8s73.711.128.4106
      Ours75.12.56.6143
      NEU-DETYOLOv3-tiny64.412.118.9156
      YOLOv4-tiny64.05.916.1120
      YOLOv5n73.22.57.1185
      YOLOv5s75.89.123.8106
      YOLOv6n75.94.211.8185
      YOLOv7-tiny68.66.013.189
      Reference [3]74.45.48.987
      Reference [10]75.12.39.0-
      Reference [11]75.714.4-109
      Reference [12]75.77.516.894
      Reference [13]76.03.0--
      YOLOv8n75.23.08.1181
      YOLOv8s75.211.128.4108
      Ours76.72.56.6154
    • Table 4. Comparison of GC10-DET dataset detection results

      View table
      View in Article

      Table 4. Comparison of GC10-DET dataset detection results

      ModelAP/%mAP@0.5/%Par/MFLOPs/GFPS
      PuWICgWsOsSsInRpCrWf
      YOLOv8n97.989.296.077.968.263.037.528.144.785.668.83.08.1303
      FCM-YOLOv8n98.689.396.578.469.767.329.136.660.890.471.72.56.6270
    Tools

    Get Citation

    Copy Citation Text

    Liming Liang, Kangquan Chen, Linjun Chen, Pengwei Long. Improving the lightweight FCM-YOLOv8n for steel surface defect detection[J]. Opto-Electronic Engineering, 2025, 52(2): 240280-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Nov. 30, 2024

    Accepted: Jan. 6, 2025

    Published Online: Apr. 27, 2025

    The Author Email:

    DOI:10.12086/oee.2025.240280

    Topics