Chinese Journal of Lasers, Volume. 47, Issue 7, 701012(2020)

Development of GaN-Based Vertical-Cavity Surface-Emitting Lasers

Yang Tianrui, Xu Huan, Mei Yang, Xu Rongbin, Zhang Baoping, and Ying Leiying
Author Affiliations
  • School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University,Xiamen, Fujian 361005, China
  • show less
    References(110)

    [1] Tatum J A. Evolution of VCSELs[J]. Proceedings of SPIE, 9001, 90010C(2014).

    [2] Feezell D F. Status and future of GaN-based vertical-cavity surface-emitting lasers[J]. Proceedings of SPIE, 9363, 93631G(2015).

    [4] Wang X, Li W Y[J]. Global patent distribution of vertical cavity surface emission laser(VCSEL) Information and Communications Technology and Policy, 2019, 14-16.

    [5] Ren G Q, Wang J F, Liu Z L et al. Research progress on GaN single crystal growth[J]. Journal of Synthetic Crystals, 48, 1588-1598(2019).

    [6] Iga K. Surface-emitting laser-its birth and generation of new optoelectronics field[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1201-1215(2000).

    [7] Soda H, Iga K I, Kitahara C et al. GaInAsP/InP surface emitting injection lasers[J]. Japanese Journal of Applied Physics, 18, 2329-2330(1979).

    [8] Amano C, Tateno K, Takenouchi H et al. MOVPE growth of C-doped GaAs/AlAs DBRs for wafer fusion[J]. Journal of Crystal Growth, 193, 460-469(1998).

    [9] Guina M, Rantamäki A, Härkönen A. Optically pumped VECSELs: review of technology and progress[J]. Journal of Physics D: Applied Physics, 50, 383001(2017).

    [10] Amano H, Kito M, Hiramatsu K et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)[J]. Japanese Journal of Applied Physics, 28, L2112-L2114(1989).

    [11] Nakamura S. GaN growth using GaN buffer layer[J]. Japanese Journal of Applied Physics, 30, L1705-L1707(1991).

    [12] Honda T, Katsube A, Sakaguchi T et al. Threshold estimation of GaN-based surface emitting lasers operating in ultraviolet spectral region[J]. Japanese Journal of Applied Physics, 34, 3527-3532(1995).

    [13] Redwing J M. Loeber D A S, Anderson N G, et al. An optically pumped GaN-AlGaN vertical cavity surface emitting laser[J]. Applied Physics Letters, 69, 1-3(1996).

    [14] Chen S Q, Okano M, Zhang B P et al. Blue 6-ps short-pulse generation in gain-switched InGaN vertical-cavity surface-emitting lasers via impulsive optical pumping[J]. Applied Physics Letters, 101, 191108(2012).

    [15] Someya T, Tachibana K, Lee J et al. Lasing emission from anIn0.1Ga0.9N vertical cavity surface emitting laser[J]. Japanese Journal of Applied Physics, 37, L1424-L1426(1998).

    [16] Someya T, Werner R, Forchel A et al. Room temperature lasing at blue wavelengths in gallium nitride microcavities[J]. Science, 285, 1905-1906(1999).

    [17] Krestnikov I L, Lundin W V, Sakharov A V et al. Room-temperature photopumped InGaN/GaN/AlGaN vertical-cavity surface-emitting laser[J]. Applied Physics Letters, 75, 1192-1194(1999).

    [18] Song Y K, Zhou H, Diagne M et al. A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser[J]. Applied Physics Letters, 76, 1662-1664(2000).

    [19] Tawara T, Gotoh H, Akasaka T et al. Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors[J]. Applied Physics Letters, 83, 830-832(2003).

    [20] Park S H, Kim J, Jeon H et al. Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme[J]. Applied Physics Letters, 83, 2121-2123(2003).

    [21] Geske J, Gan K G, Okuno Y L et al. Vertical-cavity surface-emitting laser active regions for enhanced performance with optical pumping[J]. IEEE Journal of Quantum Electronics, 40, 1155-1162(2004).

    [22] Kao C C, Peng Y C, Yao H H et al. Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector[J]. Applied Physics Letters, 87, 081105(2005).

    [23] Chu J T, Lu T C, Yao H H et al. Room-temperature operation of optically pumped blue-violet GaN-based vertical-cavity surface-emitting lasers fabricated by laser lift-off[J]. Japanese Journal of Applied Physics, 45, 2556-2560(2006).

    [24] Chu J T, Lu T C, You M et al. Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers[J]. Applied Physics Letters, 89, 121112(2006).

    [25] Kao C C, Lu T C, Huang H W et al. The lasing characteristics of GaN-based vertical-cavity surface-emitting laser with AlN-GaN and Ta2O5/SiO2 distributed Bragg reflectors[J]. IEEE Photonics Technology Letters, 18, 877-879(2006).

    [26] Lu T C, Kao C C, Huang G S et al. Optically and electrically pumped GaN-based VCSELs. [C]∥ Conference on Lasers and Electro-Optics/Pacific Rim, August 26, 2007, Seoul, Korea. Washington DC: OSA:, WA2_1(2007).

    [27] Cai L E, Zhang J Y, Zhang B P et al. Blue-green optically pumped GaN-based vertical cavity surface emitting laser[J]. Electronics Letters, 44, 972-974(2008).

    [28] Zhang J Y, Cai L E, Zhang B P et al. Low threshold lasing of GaN-based vertical cavity surface emitting lasers with an asymmetric coupled quantum well active region[J]. Applied Physics Letters, 93, 191118(2008).

    [30] Lu T C, Kao C C, Kuo H C et al. CW lasing of current injection blue GaN-based vertical cavity surface emitting laser[J]. Applied Physics Letters, 92, 141102(2008).

    [31] Higuchi Y, Omae K, Matsumura H et al. Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection[J]. Applied Physics Express, 1, 121102(2008).

    [32] Omae K, Higuchi Y, Nakagawa K et al. Improvement in lasing characteristics of GaN-based vertical-cavity surface-emitting lasers fabricated using a GaN substrate[J]. Applied Physics Express, 2, 052101(2009).

    [33] Kasahara D, Morita D, Kosugi T et al. Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature[J]. Applied Physics Express, 4, 072103(2011).

    [34] Onishi T, Imafuji O, Nagamatsu K et al. Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature[J]. IEEE Journal of Quantum Electronics, 48, 1107-1112(2012).

    [35] Izumi S, Fuutagawa N, Hamaguchi T et al. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth[J]. Applied Physics Express, 8, 062702(2015).

    [36] Hamaguchi T, Fuutagawa N, Izumi S et al. Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth[J]. Physica Status Solidi (a), 213, 1170-1176(2016).

    [37] Nakajima H, Hamaguchi T, Tanaka M et al. Single transverse mode operation of GaN-based vertical-cavity surface-emitting laser with monolithically incorporated curved mirror[J]. Applied Physics Express, 12, 084003(2019).

    [38] Hamaguchi T, Nakajima H, Tanaka M et al. Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror[J]. Applied Physics Express, 12, 044004(2019).

    [39] Kuramoto M, Kobayashi S, Akagi T et al. Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide[J]. Applied Physics Letters, 112, 111104(2018).

    [40] Kuramoto M, Kobayashi S, Akagi T et al. High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser[J]. Applied Physics Express, 11, 112101(2018).

    [41] Kuramoto M, Kobayashi S, Akagi T et al. Watt-class blue vertical-cavity surface-emitting laser arrays[J]. Applied Physics Express, 12, 091004(2019).

    [42] Lu T C, Chen S W, Wu T T et al. Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature[J]. Applied Physics Letters, 97, 071114(2010).

    [43] Chang T C, Kuo S Y, Lian J T et al. High-temperature operation of GaN-based vertical-cavity surface-emitting lasers[J]. Applied Physics Express, 10, 112101(2017).

    [44] Holder C, Speck J S. DenBaars S P, et al. Demonstration of nonpolar GaN-based vertical-cavity surface-emitting lasers[J]. Applied Physics Express, 5, 092104(2012).

    [45] Holder C O, Leonard J T, Farrell R M et al. Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching[J]. Applied Physics Letters, 105, 031111(2014).

    [46] Leonard J T, Cohen D A, Yonkee B P et al. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture[J]. Applied Physics Letters, 107, 011102(2015).

    [47] Leonard J T, Young E C, Yonkee B P et al. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact[J]. Applied Physics Letters, 107, 091105(2015).

    [48] Leonard J T, Yonkee B P, Cohen D A et al. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture[J]. Applied Physics Letters, 108, 031111(2016).

    [49] Forman C A, Lee S, Young E C et al. Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact[J]. Applied Physics Letters, 112, 111106(2018).

    [50] Forman C A, Lee S, Young E C et al. Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers[J]. Proceedings of SPIE, 10532, 105321C(2018).

    [51] Cosendey G, Castiglia A, Rossbach G et al. Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate[J]. Applied Physics Letters, 101, 151113(2012).

    [52] Liu W J, Hu X L, Ying L Y et al. Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers[J]. Applied Physics Letters, 104, 251116(2014).

    [53] Weng G E, Mei Y, Liu J P et al. Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers[J]. Optics Express, 24, 15546-15553(2016).

    [54] Mei Y, Weng G E, Zhang B P et al. Quantum dot vertical-cavity surface-emitting lasers covering the‘green gap’[J]. Light: Science & Applications, 6, e16199(2017).

    [55] Xu R B, Mei Y, Zhang B P et al. Simultaneous blue and green lasing of GaN-based vertical-cavity surface-emitting lasers[J]. Semiconductor Science and Technology, 32, 105012(2017).

    [56] Furuta T, Matsui K, Horikawa K et al. 55(5S): 05FJ11(2016).

    [57] Matsui K, Kozuka Y, Ikeyama K et al. 55(5S): 05FJ08(2016).

    [58] Furuta T, Matsui K, Kozuka Y et al. 1.7-mW nitride-based vertical-cavity surface-emitting lasers using AlInN/GaN bottom DBRs. [C]∥2016 International Semiconductor Laser Conference (ISLC), September 12-15, 2016, Kobe, Japan. New York: IEEE, 16520483(2016).

    [59] Ikeyama K, Kozuka Y, Matsui K et al. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors[J]. Applied Physics Express, 9, 102101(2016).

    [60] Takeuchi T, Kamiyama S, Iwaya M et al. GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors[J]. Reports on Progress in Physics, 82, 012502(2019).

    [61] Yeh P S, Chang C C, Chen Y T et al. GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle[J]. Applied Physics Letters, 109, 241103(2016).

    [62] Mishkat-Ul-masabih S M, Aragon A A, Monavarian M et al. Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors[J]. Applied Physics Express, 12, 036504(2019).

    [63] Mukoyama N, Otoma H, Sakurai J et al. VCSEL array-based light exposure system for laser printing[J]. Proceedings of SPIE, 6908, 69080H(2008).

    [64] Kioupakis E, Rinke P, Delaney K T et al. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes[J]. Applied Physics Letters, 98, 161107(2011).

    [65] Wierer J J. Jr, Tsao J Y, Sizov D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting[J]. Laser & Photonics Reviews, 7, 963-993(2013).

    [66] Haglund Å, Hashemi E, Bengtsson J et al. Progress and challenges in electrically pumped GaN-based VCSELs[J]. Proceedings of SPIE, 9892, 98920Y(2016).

    [68] Fang F, Zhang A M, Li T C[J]. Time: from astronomical time to atomic time Measurement Technique, 2019, 7-10.

    [69] Kitching J, Knappe S. VukicevicM, et al. A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor[J]. IEEE Transactions on Instrumentation and Measurement, 49, 1313-1317(2000).

    [70] Miah M J, Al-Samaneh A, Kern A et al. Fabrication and characterization of low-threshold polarization-stable VCSELs for Cs-based miniaturized atomic clocks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1701410(2013).

    [71] Warren M E, Podva D, Dacha P et al. Low-divergence high-power VCSEL arrays for lidar application[J]. Proceedings of SPIE, 10552, 105520E(2018).

    [72] Song Y K, Zhou H, Diagne M et al. A vertical cavity light emitting InGaN quantum well heterostructure[J]. Applied Physics Letters, 74, 3441-3443(1999).

    [73] Watanabe N, Kimoto T, Suda J. The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 ℃[J]. Journal of Applied Physics, 104, 106101(2008).

    [74] Strite S, Morkoç H. GaN, AlN, and InN: a review[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 10, 1237(1992).

    [75] Hiramatsu K, Detchprohm T, Akasaki I. Relaxation mechanism of thermal stresses in the heterostructure of GaN grown on sapphire by vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 32, 4042A(1993).

    [76] Butté R, Feltin E, Dorsaz J et al. Recent progress in the growth of highly reflective nitride-based distributed Bragg reflectors and their use in microcavities[J]. Japanese Journal of Applied Physics, 44, 7207-7216(2005).

    [77] Sohi P, Martin D, Grandjean N. Critical thickness of GaN on AlN: impact of growth temperature and dislocation density[J]. Semiconductor Science and Technology, 32, 075010(2017).

    [78] Yagi K, Kaga M, Yamashita K et al. Crack-free AlN/GaN distributed Bragg reflectors on AlN templates[J]. Japanese Journal of Applied Physics, 51, 051001(2012).

    [79] Ive T, Brandt O, Kostial H et al. Crack-free and conductive Si-doped AlN/GaN distributed Bragg reflectors grown on 6H-SiC(0001)[J]. Applied Physics Letters, 85, 1970-1972(2004).

    [80] Carlin J F, Ilegems M. High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN[J]. Applied Physics Letters, 83, 668-670(2003).

    [81] Han S H, Lee D Y, Lee S J et al. Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes[J]. Applied Physics Letters, 94, 231123(2009).

    [82] Chung R B, Han C, Pan C C et al. The reduction of efficiency droop by Al0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based light emitting diodes[J]. Applied Physics Letters, 101, 131113(2012).

    [83] Lin B C, Chang Y A, Chen K J et al. Design and fabrication of a InGaN vertical-cavity surface-emitting laser with a composition-graded electron-blocking layer[J]. Laser Physics Letters, 11, 085002(2014).

    [84] Hsieh D H, Tzou A J, Kao T S et al. Improved carrier injection in GaN-based VCSEL via AlGaN/GaN multiple quantum barrier electron blocking layer[J]. Optics Express, 23, 27145(2015).

    [85] Leonard J T, Cohen D A, Yonkee B P et al. Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts[J]. Journal of Applied Physics, 118, 145304(2015).

    [87] Feezell D F, Farrell R M, Schmidt M C et al. Thin metal intracavity contact and lateral current-distribution scheme for GaN-based vertical-cavity lasers[J]. Applied Physics Letters, 90, 181128(2007).

    [88] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

    [89] Stattin M, Sun J et al. 52(8S): 08JG05(2013).

    [90] Lee S, Forman C A, Kearns J et al. Demonstration of GaN-based vertical-cavity surface-emitting lasers with buried tunnel junction contacts[J]. Optics Express, 27, 31621-31628(2019).

    [91] Malinverni M, Martin D, Grandjean N. InGaN based micro light emitting diodes featuring a buried GaN tunnel junction[J]. Applied Physics Letters, 107, 051107(2015).

    [92] Chen G. A comparative study on the thermal characteristics of vertical-cavity surface-emitting lasers[J]. Journal of Applied Physics, 77, 4251-4258(1995).

    [93] Osinski M, Nakwaski W. Thermal analysis of closely-packed two-dimensional etched-well surface-emitting laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1, 681-696(1995).

    [94] Mei Y, Xu R B, Xu H et al. A comparative study of thermal characteristics of GaN-based VCSELs with three different typical structures[J]. Semiconductor Science and Technology, 33, 015016(2018).

    [95] Zhang J, Tong H, Liu G Y et al. Characterizations of Seebeck coefficients and thermoelectric figures of merit for AlInN alloys with various In-contents[J]. Journal of Applied Physics, 109, 053706(2011).

    [96] Kuramoto M, Kobayashi S, Akagi T et al. High-power GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors[J]. Applied Sciences, 9, 416(2019).

    [97] Langer T, Kruse A, Ketzer F A et al. Origin of the “green gap”: increasing nonradiative recombination in indium-rich GaInN/GaN quantum well structures[J]. Physica Status Solidi (c), 8, 2170-2172(2011).

    [98] Waltereit P, Brandt O, Trampert A et al. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes[J]. Nature, 406, 865-868(2000).

    [99] Meney A T. O'Reilly E P, Adams A R. Optical gain in wide bandgap GaN quantum well lasers[J]. Semiconductor Science and Technology, 11, 897-903(1996).

    [100] Tao R C. 58(SC): SCCC31[J]. Arakawa Y. Impact of quantum dots on III-nitride lasers: a theoretical calculation of threshold current densities. Japanese Journal of Applied Physics(2019).

    [101] Arakawa Y. Progress in GaN-based quantum dots for optoelectronics applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 8, 823-832(2002).

    [102] Xu R B, Mei Y, Xu H et al. Green vertical-cavity surface-emitting lasers based on combination of blue-emitting quantum wells and cavity-enhanced recombination[J]. IEEE Transactions on Electron Devices, 65, 4401-4406(2018).

    [103] Mei Y, Xu R B, Ying L Y et al. 10918: 10918 H(2019).

    [104] Detchprohm T, Li X, Shen S C et al. III-N wide bandgap deep-ultraviolet lasers and photodetectors[J]. Semiconductors and Semimetals, 96, 121-166(2017).

    [105] Chen R, Sun H D, Wang T et al. Optically pumped ultraviolet lasing from nitride nanopillars at room temperature[J]. Applied Physics Letters, 96, 241101(2010).

    [106] Liu Y S. Haq A F M S, Kao T T, et al. Development for ultraviolet vertical cavity surface emitting lasers. [C]∥2015 European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference, June 21-25, 2015, Munich, Germany. Washington DC: OSA, PD_A_2(2015).

    [107] Liu Y S. Saniul Haq A F M, Mehta K, et al. Optically pumped vertical-cavity surface-emitting laser at 374.9 nm with an electrically conducting n-type distributed Bragg reflector[J]. Applied Physics Express, 9, 111002(2016).

    [108] Chang T C, Kuo S Y, Hashemi E et al. GaN vertical-cavity surface-emitting laser with a high-contrast grating reflector[J]. Proceedings of SPIE, 10542, 105420T(2018).

    [109] Park Y J, Detchprohm T, Mehta K et al. Optically pumped vertical-cavity surface-emitting lasers at 375 nm with air-gap/Al0.05Ga0.95N distributed Bragg reflectors[J]. Proceedings of SPIE, 10938, 109380A(2019).

    [110] Zheng Z M, Li Y Q, Paul O. Loss analysis in nitride deep ultraviolet planar cavity[J]. Journal of Nanophotonics, 12, 043504(2018).

    Tools

    Get Citation

    Copy Citation Text

    Yang Tianrui, Xu Huan, Mei Yang, Xu Rongbin, Zhang Baoping, Ying Leiying. Development of GaN-Based Vertical-Cavity Surface-Emitting Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 701012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jan. 6, 2020

    Accepted: --

    Published Online: Jul. 10, 2020

    The Author Email:

    DOI:10.3788/CJL202047.0701012

    Topics