Chinese Journal of Lasers, Volume. 49, Issue 13, 1306002(2022)

Avalanche Photodiode with p-down Structure for 100 Gb/s Optical Communication System

Zhuodong Liao, Ke Li, Haoran Liu, Xiaofeng Duan*, Yongqing Huang, and Kai Liu
Author Affiliations
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    References(16)

    [1] Nakajima F, Nada M, Yoshimatsu T. High-speed avalanche photodiode and high-sensitivity receiver optical subassembly for 100-gb/s ethernet[J]. Journal of Lightwave Technology, 34, 243-248(2016).

    [2] Cui X Y, Lin F Y, Zhang Z H et al. Simulation analysis of low-noise InGaAs/InP avalanche photodiodes[J]. Chinese Journal of Lasers, 48, 1701001(2021).

    [3] Zhu Z C, Zhang Z M. 1550 nm single photon detection module based on avalanche photodiode[J]. Laser & Optoelectronics Progress, 58, 1304001(2021).

    [4] Wang J, Luo L B. Advances in Ga2O3-based solar-blind ultraviolet photodetectors[J]. Chinese Journal of Lasers, 48, 1100001(2021).

    [5] Nada M, Yoshimatsu T, Nakajima F et al. A 42-GHz bandwidth avalanche photodiodes based on III-V compounds for 106-gbit/s PAM4 applications[J]. Journal of Lightwave Technology, 37, 260-265(2019).

    [6] Nada M, Muramoto Y, Yokoyama H et al. Inverted InAlAs/InGaAs avalanche photodiode with low-high-low electric field profile[J]. Japanese Journal of Applied Physics, 51, 02BG03(2012).

    [7] Campbell J C. Recent advances in avalanche photodiodes[J]. Journal of Lightwave Technology, 34, 278-285(2016).

    [8] Xiao Y G, Li Z Q, Li Z M S. Modeling of resonant cavity enhanced separate absorption charge and multiplication avalanche photodiodes by Crosslight APSYS[J]. Proceedings of SPIE, 6660, 666014(2007).

    [9] Xiao Y G, Li Z Q, Li Z M S. Modeling of avalanche photodiodes by Crosslight APSYS[J]. Proceedings of SPIE, 6294, 62940Z(2006).

    [10] Li Q, He J L, Hu W D et al. Influencing sources for dark current transport and avalanche mechanisms in planar and mesa HgCdTe p-i-n electron-avalanche photodiodes[J]. IEEE Transactions on Electron Devices, 65, 572-576(2018).

    [11] Xie R Z, Li Q, Wang P et al. Spatial description theory of narrow-band single-carrier avalanche photodetectors[J]. Optics Express, 29, 16432-16446(2021).

    [12] Li Q, Wang F, Wang P et al. Enhanced performance of HgCdTe midwavelength infrared electron avalanche photodetectors with guard ring designs[J]. IEEE Transactions on Electron Devices, 67, 542-546(2020).

    [13] Yuan P, Hansing C C, Anselm K A et al. Impact ionization characteristics of III-V semiconductors for a wide range of multiplication region thicknesses[J]. IEEE Journal of Quantum Electronics, 36, 198-204(2000).

    [14] Wang H, Yuan Z B, Tan M et al. Effect of multiplication layer thickness on device properties of In0.53Ga0.47As/InP avalanche photodiode[J]. Acta Optica Sinica, 40, 1804001(2020).

    [15] Ishibashi T, Shimizu N, Kodama S et al. Uni-traveling-carrier photodiodes[C], UC3(1997).

    [16] Muramoto Y, Ishibashi T. InP/InGaAs pin photodiode structure maximising bandwidth and efficiency[J]. Electronics Letters, 39, 1749-1750(2003).

    Tools

    Get Citation

    Copy Citation Text

    Zhuodong Liao, Ke Li, Haoran Liu, Xiaofeng Duan, Yongqing Huang, Kai Liu. Avalanche Photodiode with p-down Structure for 100 Gb/s Optical Communication System[J]. Chinese Journal of Lasers, 2022, 49(13): 1306002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber optics and optical communication

    Received: Nov. 16, 2021

    Accepted: Jan. 4, 2022

    Published Online: Jun. 27, 2022

    The Author Email: Duan Xiaofeng (xfduan@bupt.edu.cn)

    DOI:10.3788/CJL202249.1306002

    Topics