Chinese Journal of Lasers, Volume. 51, Issue 1, 0101001(2024)

Progress in Research on Visible Rare‑Earth‑Doped Fiber Lasers: from Continuous Wave to Femtosecond Pulse (Invited)

Zhengqian Luo1,2、*, Luming Song1, and Qiujun Ruan1,2
Author Affiliations
  • 1Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, Fujian , China
  • 2Shenzhen Research Institute,Xiamen University, Shenzhen 518129, Guangdong , China
  • show less
    References(105)

    [1] Chellappan K V, Erden E, Urey H. Laser-based displays: a review[J]. Applied Optics, 49, F79-F98(2010).

    [2] Shi W, Fang Q, Zhu X S et al. Fiber lasers and their applications[J]. Applied Optics, 53, 6554-6568(2014).

    [3] Han Y, Guo Y B, Gao B et al. Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers[J]. Progress in Quantum Electronics, 71, 100264(2020).

    [5] Hamza M, El-Ahl M H S, Hamza A M et al. Application of blue laser diodes and LEDs in phototherapy for neonatal jaundice[J]. Proceedings of SPIE, 5142, 187-191(2003).

    [6] Peng F, Liu W P, Luo J Q et al. Study of growth, defects and thermal and spectroscopic properties of Dy: GdScO3 and Dy, Tb∶GdScO3 as promising 578 nm laser crystals[J]. CrystEngComm, 20, 6291-6299(2018).

    [7] Hollins R, Rudge A, Bennett S. Technologies for blue-green underwater optical communications[J]. Proceedings of SPIE, 8899, 88990F(2013).

    [8] Susaki W, Takamiya S. Visible semiconductor laser[J]. Japanese Journal of Applied Physics, 20, 205(1981).

    [9] Bridges W B. Laser oscillation in singly ionized argon in the visible spectrum[J]. Applied Physics Letters, 4, 128-130(1964).

    [10] Soffer B H, McFarland B B. Continuously tunable, narrow-band organic dye lasers[J]. Applied Physics Letters, 10, 266-267(1967).

    [11] Rines G A, Zenzie H H, Moulton P F. Recent advances in Ti∶Al2O3 unstable-resonator lasers[C], TL3(1991).

    [12] Fujimoto Y, Nakanishi J, Yamada T et al. Visible fiber lasers excited by GaN laser diodes[J]. Progress in Quantum Electronics, 37, 185-214(2013).

    [13] Zheng Y, Qiu H X, Li Y et al. Visible light metamaterial saturable absorber based on vanadium dioxide[J]. Acta Optica Sinica, 42, 1516001(2022).

    [14] Guan C, Cong Z H, Liu Z J et al. 10.5 W laser output at 760 nm from LD pumped alexandrite crystal[J]. Chinese Journal of Lasers, 47, 1015001(2020).

    [16] Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes[J]. Applied Physics Letters, 64, 1687-1689(1994).

    [17] Kränkel C, Marzahl D T, Moglia F et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers[J]. Laser & Photonics Reviews, 10, 548-568(2016).

    [18] Marantz H, Rudko R, Tang C. The singly ionized krypton ion laser[J]. IEEE Journal of Quantum Electronics, 5, 38-44(1969).

    [19] White A D, Gordon E I, Rigden J D. Output power of the 6328-Å gas maser[J]. Applied Physics Letters, 2, 91-93(1963).

    [20] Basting D, Pippert K D, Stamm U. History and future prospects of excimer lasers[J]. Proceedings of SPIE, 4426, 25-34(2002).

    [21] Taylor L R, Feng Y, Calia D B. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 18, 8540-8455(2010).

    [22] Fan Y X, Eckardt R, Byer R et al. Visible BaB2O4 optical parametric oscillator pumped at 355 nm by a single-axial-mode pulsed source[J]. Applied Physics Letters, 53, 2014-2016(1988).

    [23] Harth A, Schultze M, Lang T et al. Two-color pumped OPCPA system emitting spectra spanning 1.5 octaves from VIS to NIR[J]. Optics Express, 20, 3076-3081(2012).

    [24] Brierley M C, Massicott J F, Whitley T J et al. Visible fiber laser[J]. BT Technology Journal, 11, 128-36(1993).

    [25] Scheps R. Upconversion laser processes[J]. Progress in Quantum Electronics, 20, 271-358(1996).

    [26] Takahashi K, Nashimoto N, Koganei A et al. Development of a primary yellow (575 nm) laser by Dy3+-doped double-clad-structured waterproof fluoro-aluminate glass fiber[J]. Optics Communications, 545, 129650(2023).

    [27] Weichmann U, Baier J, Heusler G et al. High-power upconversion fibre lasers for the visible wavelength range[C](2007).

    [28] Lord M P, Olivier M, Bernier M et al. Visible femtosecond fiber laser[J]. Optics Letters, 48, 3709-3712(2023).

    [29] Adam J L, Sibley W A, Gabbe D R. Optical absorption and emission of LiYF4: Pr3+[J]. Journal of Luminescence, 33, 391-407(1985).

    [30] Dieke G H, Crosswhite H M. The spectra of the doubly and triply ionized rare earths[J]. Applied Optics, 2, 675-686(1963).

    [31] Amin M Z, Jackson S D, Majewski M R. Experimental and theoretical analysis of Dy3+-doped fiber lasers for efficient yellow emission[J]. Applied Optics, 60, 4613-4621(2021).

    [32] Metz P W, Marzahl D T, Majid A et al. Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions[J]. Laser & Photonics Reviews, 10, 335-344(2016).

    [33] Digonnet M J F[M]. Rare-earth-doped fiber lasers and amplifiers(2001).

    [34] Qin G, Huang S, Feng Y et al. Power scaling of Tm3+ doped ZBLAN blue upconversion fiber lasers: modeling and experiments[J]. Applied Physics B, 82, 65-70(2006).

    [35] Zeller M, Limberger H G, Lasser T. Tunable Pr3+-Yb3+-doped all-fiber upconversion laser[J]. IEEE Photonics Technology Letters, 15, 194-196(2003).

    [36] Farries M C, Morkel P R, Townsend J E. Samarium3+-doped glass laser operating at 651 nm[J]. Electronics Letters, 24, 709-711(1988).

    [37] Allain J Y, Monerie M, Poignant H. Red upconversion Yb-sensitised Pr fluoride fibre laser pumped in 0.8 μm region[J]. Electronics Letters, 27, 1156-1157(1991).

    [38] Piehler D, Craven D, Kwong N et al. Laser-diode-pumped red and green upconversion fibre lasers[J]. Electronics Letters, 29, 1857-1858(1993).

    [39] Allain J Y, Monerie M, Poignant H. Tunable CW lasing around 610, 635, 695, 715, 885 and 910 nm in praseodymium-doped fluorozirconate fibre[J]. Electronics Letters, 27, 189-191(1991).

    [40] Ji S H, Wang Z Y, Huang S H et al. 532 nm pumped visible emission from Ho3+-doped fiber lasers[J]. Optics & Laser Technology, 158, 108900(2023).

    [41] Huenkemeier J, Wolf J, Stark A et al. Visible up-conversion fiber laser with multiple switchable wavelengths[J]. Proceedings of SPIE, 5709, 110-116(2005).

    [42] Xie P, Gosnell T R. Room-temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions[J]. Optics Letters, 20, 1014-1016(1995).

    [43] Sandrock T, Scheife H, Heumann E et al. High-power continuous-wave upconversion fiber laser at room temperature[J]. Optics Letters, 22, 808-810(1997).

    [44] Zellmer H, Riedel P, Tünnermann A. Visible upconversion lasers in praseodymium-ytterbium-doped fibers[J]. Applied Physics B, 69, 417-421(1999).

    [45] Zellmer H, Riedel P, Kempe M et al. High-power diode pumped upconversion fibre laser in red and green spectral range[J]. Electronics Letters, 38, 1250-1251(2002).

    [46] Smart R G, Hanna D C, Tropper A C et al. CW room temperature upconversion lasing at blue, green and red wavelengths in infrared-pumped Pr3+-doped fluoride fibre[J]. Electronics Letters, 27, 1307-1309(1991).

    [47] Baney D M, Rankin G, Chang K W. Blue Pr3+-doped ZBLAN fiber upconversion laser[J]. Optics Letters, 21, 1372-1374(1996).

    [48] Allain J Y, Monerie M, Poignant H. Room temperature CW tunable green upconversion holmium fibre laser[J]. Electronics Letters, 26, 261-263(1990).

    [49] Funk D S, Stevens S B, Wu S S et al. Tuning, temporal, and spectral characteristics of the green (λ ~ 549 nm), holmium-doped fluorozirconate glass fiber laser[J]. IEEE Journal of Quantum Electronics, 32, 638-645(1996).

    [50] Ji S H, Liu S Q, Lin X J et al. Watt-level visible continuous-wave upconversion fiber lasers toward the “green gap” wavelengths of 535-553 nm[J]. ACS Photonics, 8, 2311-2319(2021).

    [51] Whitley T J, Millar C A, Wyatt R et al. Upconversion pumped green lasing in erbium doped fluorozirconate fibre[J]. Electronics Letters, 27, 1785-1786(1991).

    [52] Allain J Y, Monerie M, Poignant H. Tunable green upconversion erbium fibre laser[J]. Electronics Letters, 28, 111-113(1992).

    [53] Ferber S, Gaebler V, Eichler H J. Violet and blue upconversion-emission from erbium-doped ZBLAN-fibers with red diode laser pumping[J]. Optical Materials, 20, 211-215(2002).

    [54] Allain J Y, Monerie M, Poignant H. Blue upconversion fluorozirconate fibre laser[J]. Electronics Letters, 26, 166-168(1990).

    [55] Sanders S, Waarts R G, Mehuys D G et al. Laser diode pumped 106 mW blue upconversion fiber laser[J]. Applied Physics Letters, 67, 1815-1817(1995).

    [56] Paschotta R, Moore N, Clarkson W A et al. 230 mW of blue light from a thulium-doped upconversion fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 3, 1100-1102(1997).

    [57] Qin G S, Huang S H, Feng Y et al. Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber[J]. IEEE Photonics Technology Letters, 17, 1818-1820(2005).

    [58] Funk D S, Carlson J W, Eden J G. Room-temperature fluorozirconate glass fiber laser in the violet (412 nm)[J]. Optics Letters, 20, 1474-1476(1995).

    [59] Zhao Y X, Fleming S. High efficiency blue Pr3+-doped fibre laser with high numerical aperture fibre[C], VL12(1995).

    [60] Smart R G, Carter J N, Tropper A C et al. CW room temperature operation of praseodymium-doped fluorozirconate glass fibre lasers in the blue-green, green and red spectral regions[J]. Optics Communications, 86, 333-340(1991).

    [61] Richter A, Scheife H, Heumann E et al. Semiconductor laser pumping of continuous-wave Pr3+doped ZBLAN fibre laser[J]. Electronics Letters, 41, 794-795(2005).

    [62] Okamoto H, Kasuga K, Hara I et al. Visible-NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode[J]. Optics Express, 17, 20227-20232(2009).

    [63] Okamoto H, Kasuga K, Kubota Y. Efficient 521 nm all-fiber laser: splicing Pr3+-doped ZBLAN fiber to end-coated silica fiber[J]. Optics Letters, 36, 1470-1472(2011).

    [64] Kifle E, Starecki F, Loiko P et al. Watt-level visible laser in double-clad Pr3+-doped fluoride fiber pumped by a GaN diode[J]. Optics Letters, 46, 74-77(2020).

    [65] Lord M P, Fortin V, Maes F et al. 2.3 W monolithic fiber laser operating in the visible[J]. Optics Letters, 46, 2392-2395(2021).

    [66] Zou J H, Hong J F, Zhao Z et al. 3.6 W compact all-fiber Pr3+-doped green laser at 521 nm[J]. Advanced Photonics, 4, 056001(2022).

    [68] Hong J F, Zou J H, Wang Y et al. All-fiber cyan laser at 491.5 nm[J]. Optics Letters, 48, 1327-1330(2023).

    [69] Zhang C, Hong J F, Zhou L J et al. Direct generation of 5 W all-fiber red laser at 635 nm[J]. Optics & Laser Technology, 160, 109050(2023).

    [70] Nakanishi J, Yamada T, Fujitomo Y et al. Sub-watt output power at 638 nm in wavelength by direct oscillation with Pr-doped waterproof fluoro-aluminate glass fiber laser[C](2011).

    [71] Nakanishi J, Horiuchi Y, Yamada T et al. High-power direct green laser oscillation of 598 mW in Pr3+-doped waterproof fluoroaluminate glass fiber excited by two-polarization-combined GaN laser diodes[J]. Optics Letters, 36, 1836-1838(2011).

    [72] Fujimoto Y, Nakahara M, Binun P et al. 2 W single-mode visible laser oscillation in Pr-doped double-clad structured waterproof fluoro-aluminate glass fiber[C](2019).

    [73] Limpert J, Zellmer H, Riedel P et al. Laser oscillation in yellow and blue spectral range in Dy3+∶ZBLAN[J]. Electronics Letters, 36, 1386-1387(2000).

    [74] Zou J H, Li T R, Dou Y B et al. Direct generation of watt-level yellow Dy3+-doped fiber laser[J]. Photonics Research, 9, 446-451(2021).

    [75] Fujimoto Y, Ishii O, Yamazaki M. Yellow laser oscillation in Dy3+-doped waterproof fluoro-aluminate glass fibre pumped by 398.8 nm GaN laser diodes[J]. Electronics Letters, 46, 586-587(2010).

    [76] Yamashita T, Qin G S, Suzuki T et al. A new green fiber laser using terbium-doped fluoride fiber[C](2008).

    [77] Ji S H, Song Y Y, Wang Z Y et al. High power downconversion deep-red emission from Ho3+-doped fiber lasers[J]. Nanophotonics, 11, 1603-1609(2022).

    [78] Nakanishi J, Yamada T, Murakami M et al. Watt-order direct green laser oscillation at 522nm in Pr3+-doped waterproof fluoro-aluminate-glass fiber[C], JTu4A.02(2013).

    [79] Fujitomo Y, Murakami M, Nakanishi J et al. Visible lasers in waterproof fluoro-aluminate glass fibers excited by GaN laser diodes[C], AM2A(2013).

    [80] Kojou J, Watanabe Y, Agrawal P et al. Wavelength tunable Q-switch laser in visible region with Pr3+-doped fluoride-glass fiber pumped by GaN diode laser[J]. Optics Communications, 290, 136-140(2013).

    [81] Wu D D, Quan C J, Guo Z R et al. Self Q-switched mode-locking in compact red Pr3+-doped ZBLAN fiber laser[J]. Journal of Optics, 20, 085501(2018).

    [82] Luo Z Q, Ruan Q J, Zhong M et al. Compact self-Q-switched green upconversion Er∶ZBLAN all-fiber laser operating at 543.4 nm[J]. Optics Letters, 41, 2258-2261(2016).

    [83] Li W S, Wu J J, Guan X F et al. Efficient continuous-wave and short-pulse Ho3+-doped fluorozirconate glass all-fiber lasers operating in the visible spectral range[J]. Nanoscale, 10, 5272-5279(2018).

    [84] Li W S, Wu J J, Cai Z P et al. Directly blue diode-pumped green self-Q-switched Ho3+-doped fluoride all-fiber laser at ∼550 nm[J]. Journal of Lightwave Technology, 37, 5727-5732(2019).

    [85] Li W S, Du T J, Lan J L et al. 716 nm deep-red passively Q-switched Pr∶ZBLAN all-fiber laser using a carbon-nanotube saturable absorber[J]. Optics Letters, 42, 671-674(2017).

    [86] Zhong Y L, Cai Z P, Wu D D et al. Passively Q-switched red Pr3+-doped fiber laser with graphene-oxide saturable absorber[J]. IEEE Photonics Technology Letters, 28, 1755-1758(2016).

    [87] Kajikawa S, Yoshida M, Ishii O et al. Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene[J]. Optics Communications, 424, 13-16(2018).

    [88] Wu D D, Cai Z P, Zhong Y L et al. 635-nm visible Pr3+-doped ZBLAN fiber lasers Q-switched by topological insulators SAs[J]. IEEE Photonics Technology Letters, 27, 2379-2382(2015).

    [89] Wu D D, Cai Z P, Zhong Y L et al. Compact passive Q-switching Pr3+-doped ZBLAN fiber laser with black phosphorus-based saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 7-12(2017).

    [90] Luo Z Q, Wu D D, Xu B et al. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers[J]. Nanoscale, 8, 1066-1072(2016).

    [91] Li W S, Ma Q, Wu J J et al. Investigation on the effect of output mirror transmission in WS2-based red-light passively Q-switched Pr: ZBLAN all-fiber lasers[J]. Applied Optics, 56, 7749-7755(2017).

    [92] Li W S, Zhu C H, Rong X F et al. Bidirectional red-light passively Q-switched all-fiber ring lasers with carbon nanotube saturable absorber[J]. Journal of Lightwave Technology, 36, 2694-2701(2018).

    [93] Wu D D, Peng J, Cai Z P et al. Gold nanoparticles as a saturable absorber for visible 635 nm Q-switched pulse generation[J]. Optics Express, 23, 24071-24076(2015).

    [94] Wu D D, Lin H Y, Cai Z P et al. Saturable absorption of copper nanowires in visible regions for short-pulse generation[J]. IEEE Photonics Journal, 8, 4501507(2016).

    [95] Zou J H, Kang Z, Wang R et al. Green/red pulsed vortex-beam oscillations in all-fiber lasers with visible-resonance gold nanorods[J]. Nanoscale, 11, 15991-16000(2019).

    [96] Fujimoto Y, Suzuki T, Ochante R A M et al. Generation of orange pulse laser in waterproof fluoride glass fibre with graphene thin film[J]. Electronics Letters, 50, 1470-1472(2014).

    [97] Li W S, Peng J, Zhong Y L et al. Orange-light passively Q-switched Pr3+-doped all-fiber lasers with transition-metal dichalcogenide saturable absorbers[J]. Optical Materials Express, 6, 2031-2039(2016).

    [98] Lin H Y, Li W S, Lan J L et al. All-fiber passively Q-switched 604 nm praseodymium laser with a Bi2Se3 saturable absorber[J]. Applied Optics, 56, 802-805(2017).

    [99] Li T R, Wang Z Y, Zou J Het al. Direct generation of 3.17 mJ green pulses in a cavity-dumped Ho3+-doped fiber laser at 543 nm[J]. Photonics Research, 11, 413-419(2023).

    [100] Costantini D M, Limberger H G, Lasser T et al. Actively mode-locked visible upconversion fiber laser[J]. Optics Letters, 25, 1445-1447(2000).

    [101] Zou J H, Dong C C, Wang H J et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format[J]. Light: Science & Applications, 9, 61(2020).

    [102] Sun H G, Wang L X, Zou J H et al. Visible-wavelength all-fiber mode-locked vortex laser[J]. Journal of Lightwave Technology, 40, 191-195(2022).

    [103] Ruan Q J, Xiao X S, Zou J H et al. Visible-wavelength spatiotemporal mode-locked fiber laser delivering 9 ps, 4 nJ pulses at 635 nm[J]. Laser & Photonics Reviews, 16, 2100678(2022).

    [104] Luo S Y, Gu H, Tang X et al. High-power yellow DSR pulses generated from a mode-locked Dy∶ZBLAN fiber laser[J]. Optics Letters, 47, 1157-1160(2022).

    [105] Luo S Y, Tang X, Geng X et al. Ultrafast true-green Ho: ZBLAN fiber laser inspired by the TD3 AI algorithm[J]. Optics Letters, 47, 5881-5884(2022).

    Tools

    Get Citation

    Copy Citation Text

    Zhengqian Luo, Luming Song, Qiujun Ruan. Progress in Research on Visible Rare‑Earth‑Doped Fiber Lasers: from Continuous Wave to Femtosecond Pulse (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0101001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Sep. 26, 2023

    Accepted: Oct. 25, 2023

    Published Online: Jan. 26, 2024

    The Author Email: Luo Zhengqian (zqluo@xmu.edu.cn)

    DOI:10.3788/CJL231233

    CSTR:32183.14.CJL231233

    Topics