Laser & Optoelectronics Progress, Volume. 62, Issue 18, 1817010(2025)

Event-Driven Microscopy: New Frontiers of Intravital Bioimaging (Invited)

Chenhui Yu1,2, Guanyi Zhu1,2, and Fei He1,2,3、*
Author Affiliations
  • 1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Zhangjiang Laboratory, Shanghai 201210, China
  • show less
    References(106)

    [1] Shimomura O, Johnson F H, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea[J]. Journal of Cellular and Comparative Physiology, 59, 223-239(1962).

    [3] Pesce L, Laurino A, Scardigli M et al. Exploring the human cerebral cortex using confocal microscopy[J]. Progress in Biophysics and Molecular Biology, 168, 3-9(2022).

    [5] Stosiek C, Garaschuk O, Holthoff K et al. In vivo two-photon calcium imaging of neuronal networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 100, 7319-7324(2003).

    [17] Entenberg D, Oktay M H, Condeelis J S. Intravital imaging to study cancer progression and metastasis[J]. Nature Reviews Cancer, 23, 25-42(2022).

    [18] Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells[J]. Cancer Cell International, 22, 394(2022).

    [19] Alieva M, Wezenaar A K L, Wehrens E J et al. Bridging live-cell imaging and next-generation cancer treatment[J]. Nature Reviews Cancer, 23, 731-745(2023).

    [20] Dombeck D A, Khabbaz A N, Collman F et al. Imaging large-scale neural activity with cellular resolution in awake, mobile mice[J]. Neuron, 56, 43-57(2007).

    [21] Choquet D, Sainlos M, Sibarita J B. Advanced imaging and labelling methods to decipher brain cell organization and function[J]. Nature Reviews Neuroscience, 22, 237-255(2021).

    [23] Chao J A, Lionnet T. Imaging the life and death of mRNAs in single cells[J]. Cold Spring Harbor Perspectives in Biology, 10, a032086(2018).

    [24] Gabriele M, Brandão H B, Grosse-Holz S et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging[J]. Science, 376, 496-501(2022).

    [25] Yi E, Gujar A D, Guthrie M et al. Live-cell imaging shows uneven segregation of extrachromosomal DNA elements and transcriptionally active extrachromosomal DNA hubs in cancer[J]. Cancer Discovery, 12, 468-483(2022).

    [26] Scherf N, Huisken J. The smart and gentle microscope[J]. Nature Biotechnology, 33, 815-818(2015).

    [27] Patterson G H, Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling of proteins and cells[J]. Science, 297, 1873-1877(2002).

    [30] Chu K K, Lim D, Mertz J. Enhanced weak-signal sensitivity in two-photon microscopy by adaptive illumination[J]. Optics Letters, 32, 2846-2848(2007).

    [31] Chakrova N, Canton A S, Danelon C et al. Adaptive illumination reduces photobleaching in structured illumination microscopy[J]. Biomedical Optics Express, 7, 4263-4274(2016).

    [32] Heine J, Reuss M, Harke B et al. Adaptive-illumination STED nanoscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 9797-9802(2017).

    [34] Li B, Wu C Y, Wang M R et al. An adaptive excitation source for high-speed multiphoton microscopy[J]. Nature Methods, 17, 163-166(2019).

    [35] Pinkard H, Baghdassarian H, Mujal A et al. Learned adaptive multiphoton illumination microscopy for large-scale immune response imaging[J]. Nature Communications, 12, 1916(2021).

    [36] Conrad C, Wünsche A, Tan T H et al. Micropilot: automation of fluorescence microscopy-based imaging for systems biology[J]. Nature Methods, 8, 246-249(2011).

    [37] Almada P, Pereira P M, Culley S et al. Automating multimodal microscopy with NanoJ-Fluidics[J]. Nature Communications, 10, 1223(2019).

    [39] Alvelid J, Damenti M, Sgattoni C et al. Event-triggered STED imaging[J]. Nature Methods, 19, 1268-1275(2022).

    [41] André O, Kumra Ahnlide J, Norlin N et al. Data-driven microscopy allows for automated context-specific acquisition of high-fidelity image data[J]. Cell Reports Methods, 3, 100419(2023).

    [43] Mangalwedhekar R, Singh N, Thakur C S et al. Achieving nanoscale precision using neuromorphic localization microscopy[J]. Nature Nanotechnology, 18, 380-389(2023).

    [44] Cabriel C, Monfort T, Specht C G et al. Event-based vision sensor for fast and dense single-molecule localization microscopy[J]. Nature Photonics, 17, 1105-1113(2023).

    [45] Guo R P, Yang Q W, Chang A S et al. EventLFM: event camera integrated Fourier light field microscopy for ultrafast 3D imaging[J]. Light: Science & Applications, 13, 144(2024).

    [48] Rebecq H, Ranftl R, Koltun V et al. High speed and high dynamic range video with an event camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 1964-1980(2021).

    [49] Jiang Y, Wang Y H, Li S Q et al. Event-based low-illumination image enhancement[J]. IEEE Transactions on Multimedia, 26, 1920-1931(2023).

    [52] Xu M L, Li F Y, Liu Y Q et al. Frontiers of implantable multimodal neural interfaces[J]. Chinese Journal of Lasers, 50, 1507301(2023).

    [54] Ota K, Oisi Y, Suzuki T et al. Fast, cell-resolution, contiguous-wide two-photon imaging to reveal functional network architectures across multi-modal cortical areas[J]. Neuron, 109, 1810-1824(2021).

    [56] Schneggenburger R, Neher E. Intracellular calcium dependence of transmitter release rates at a fast central synapse[J]. Nature, 406, 889-893(2000).

    [57] Südhof T C. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle[J]. Neuron, 80, 675-690(2013).

    [58] Kamin D, Lauterbach M A, Westphal V et al. High- and low-mobility stages in the synaptic vesicle cycle[J]. Biophysical Journal, 99, 675-684(2010).

    [59] Joensuu M, Padmanabhan P, Durisic N et al. Subdiffractional tracking of internalized molecules reveals heterogeneous motion states of synaptic vesicles[J]. The Journal of Cell Biology, 215, 277-292(2016).

    [60] Chanaday N L, Cousin M A, Milosevic I et al. The synaptic vesicle cycle revisited: new insights into the modes and mechanisms[J]. The Journal of Neuroscience, 39, 8209-8216(2019).

    [61] Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function[J]. Nature Reviews Molecular Cell Biology, 10, 623-635(2009).

    [62] Mesaki K, Tanabe K, Obayashi M et al. Fission of tubular endosomes triggers endosomal acidification and movement[J]. PLoS One, 6, e19764(2011).

    [63] Laiouar S, Berns N, Brech A et al. RabX1 organizes a late endosomal compartment that forms tubular connections to lysosomes consistent with a “kiss and run” mechanism[J]. Current Biology, 30, 1177-1188(2020).

    [65] Hosseini H, Obradović M M S, Hoffmann M et al. Early dissemination seeds metastasis in breast cancer[J]. Nature, 540, 552-558(2016).

    [66] Hata A N, Niederst M J, Archibald H L et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition[J]. Nature Medicine, 22, 262-269(2016).

    [68] Sharma V P, Tang B W, Wang Y R et al. Live tumor imaging shows macrophage induction and TMEM-mediated enrichment of cancer stem cells during metastatic dissemination[J]. Nature Communications, 12, 7300(2021).

    [69] Kircher M F, de la Zerda A, Jokerst J V et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle[J]. Nature Medicine, 18, 829-834(2012).

    [70] Efremova M V, Bodea S V, Sigmund F et al. Genetically encoded self-assembling iron oxide nanoparticles as a possible platform for cancer-cell tracking[J]. Pharmaceutics, 13, 397(2021).

    [71] Wyckoff J B, Wang Y R, Lin E Y et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors[J]. Cancer Research, 67, 2649-2656(2007).

    [72] Arlauckas S P, Garris C S, Kohler R H et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy[J]. Science Translational Medicine, 9, eaal3604(2017).

    [73] Weigelin B, den Boer A T, Wagena E et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity[J]. Nature Communications, 12, 5217(2021).

    [74] Liu Q, Tian J W, Tian Y et al. Near-infrared-II nanoparticles for cancer imaging of immune checkpoint programmed death-ligand 1 and photodynamic/immune therapy[J]. ACS Nano, 15, 515-525(2021).

    [75] June C H, O’Connor R S, Kawalekar O U et al. CAR T cell immunotherapy for human cancer[J]. Science, 359, 1361-1365(2018).

    [76] Liu J, Zhang X M, Cheng Y J et al. Dendritic cell migration in inflammation and immunity[J]. Cellular & Molecular Immunology, 18, 2461-2471(2021).

    [77] Fowell D J, Kim M. The spatio-temporal control of effector T cell migration[J]. Nature Reviews Immunology, 21, 582-596(2021).

    [78] Shah K, Al-Haidari A, Sun J M et al. T cell receptor (TCR) signaling in health and disease[J]. Signal Transduction and Targeted Therapy, 6, 412(2021).

    [79] Krutzik P O, Nolan G P. Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events[J]. Cytometry: Part A, 55, 61-70(2003).

    [80] Nimmerjahn F, Ravetch J V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding[J]. Science, 310, 1510-1512(2005).

    [81] Lämmermann T, Afonso P V, Angermann B R et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo[J]. Nature, 498, 371-375(2013).

    [82] Markey K A, Gartlan K H, Kuns R D et al. Imaging the immunological synapse between dendritic cells and T cells[J]. Journal of Immunological Methods, 423, 40-44(2015).

    [84] Liu J, Cheng P H, Xu C et al. Molecular probes for in vivo optical imaging of immune cells[J]. Nature Biomedical Engineering, 9, 618-637(2025).

    [85] Miller M J, Wei S H, Parker I et al. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node[J]. Science, 296, 1869-1873(2002).

    [86] Chudnovskiy A, Pasqual G, Victora G D. Studying interactions between dendritic cells and T cells in vivo[J]. Current Opinion in Immunology, 58, 24-30(2019).

    [87] Zinselmeyer B H, Heydari S, Sacristán C et al. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis[J]. The Journal of Experimental Medicine, 210, 757-774(2013).

    [88] Dustin M L, Cooper J A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling[J]. Nature Immunology, 1, 23-29(2000).

    [89] Anselmo A C, Mitragotri S. Nanoparticles in the clinic: an update[J]. Bioengineering & Translational Medicine, 4, e10143(2019).

    [90] Asgari S, Pourjavadi A, Licht T R et al. Polymeric carriers for enhanced delivery of probiotics[J]. Advanced Drug Delivery Reviews, 161, 1-21(2020).

    [92] Li P Z, Wang D D, Hu J et al. The role of imaging in targeted delivery of nanomedicine for cancer therapy[J]. Advanced Drug Delivery Reviews, 189, 114447(2022).

    [93] Fang H B, Wang M M, Wei P F et al. Molecular probes for super-resolution imaging of drug dynamics[J]. Advanced Drug Delivery Reviews, 210, 115330(2024).

    [94] Pylvänäinen J W, Gómez-de-Mariscal E, Henriques R et al. Live-cell imaging in the deep learning era[J]. Current Opinion in Cell Biology, 85, 102271(2023).

    [95] Cao R, Nelson S D, Davis S et al. Label-free intraoperative histology of bone tissue via deep-learning-assisted ultraviolet photoacoustic microscopy[J]. Nature Biomedical Engineering, 7, 124-134(2022).

    [96] Chakraborty K K, Mukherjee R, Chakroborty C et al. Automated recognition of optical image based potato leaf blight diseases using deep learning[J]. Physiological and Molecular Plant Pathology, 117, 101781(2022).

    [97] Liu Z C, Jin L H, Chen J C et al. A survey on applications of deep learning in microscopy image analysis[J]. Computers in Biology and Medicine, 134, 104523(2021).

    [98] Bodén A, Ollech D, York A G et al. Super-sectioning with multi-sheet reversible saturable optical fluorescence transitions (RESOLFT) microscopy[J]. Nature Methods, 21, 882-888(2024).

    [99] Sahl S J, Matthias J, Inamdar K et al. Direct optical measurement of intramolecular distances with angstrom precision[J]. Science, 386, 180-187(2024).

    [103] Geng Y J, Cong L L, Cao X M et al. Preliminary exploration of plasmon-enhanced four-wave mixing imaging and its possible application in antibody-drug metabolism in the body[J]. Laser & Optoelectronics Progress, 59, 0617024(2022).

    [104] Kabakova I, Zhang J T, Xiang Y C et al. Brillouin microscopy[J]. Nature Reviews Methods Primers, 4, 8(2024).

    Tools

    Get Citation

    Copy Citation Text

    Chenhui Yu, Guanyi Zhu, Fei He. Event-Driven Microscopy: New Frontiers of Intravital Bioimaging (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(18): 1817010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: May. 7, 2025

    Accepted: Jul. 1, 2025

    Published Online: Sep. 11, 2025

    The Author Email: Fei He (hefei@siom.ac.cn)

    DOI:10.3788/LOP251160

    CSTR:32186.14.LOP251160

    Topics