Acta Optica Sinica, Volume. 45, Issue 7, 0726001(2025)
Reconstruction of Wavefronts with Arbitrary Aperture Using Multi-Directional Difference Zernike Polynomial Fitting
Fig. 2. Distributions of primary aberration terms in non-circular Zernike polynomial. (a)‒(c) Rectangular aperture; (d)‒(f) square aperture; (g)‒(i) annular aperture
Fig. 3. Schematic diagram of interference for quadriwave lateral shearing interferometer and definition of shearing direction
Fig. 5. Original wavefront under different apertures. (a) Annular aperture; (b) square aperture; (c) rectangular aperture
Fig. 6. Reconstructed wavefront, reconstruction error, and reconstruction coefficient error of DZPF-AA in annular, square, and rectangular apertures. (a)‒(c) Distribution diagrams of reconstructed wavefront; (d)‒(f) distribution diagrams of reconstruction error; (g)‒(i) diagrams of reconstruction coefficient error
Fig. 7. Variations of relative reconstruction error
Fig. 8. When the noise level is at 30%, variations in relative reconstruction error
Fig. 9. In absence of noise, variations of relative reconstruction error
Fig. 10. When the noise level is 30%, variations of relative reconstruction error
Fig. 11. Layout of null test experiment using quadriwave lateral shearing interferometer
Fig. 12. Interferogram of null test experiment using quadriwave lateral shearing interferometer
Fig. 13. Effective interferograms of different apertures. (a) Annular aperture; (b) square aperture; (c) rectangular aperture
Fig. 14. Wavefront reconstruction results for different apertures, when using the DZPF-AA for null test experiment. (a) Annular aperture; (b) square aperture; (c) rectangular aperture
Fig. 15. Experiment on aberration test for wavefront reconstruction with arbitrary aperture. (a) Optical path schematic; (b) experimental setup diagram
Fig. 16. Quadriwave lateral shearing interferogram corresponding to wavefront with aberrations
Fig. 17. Experimental results of testing wavefront with aberrations under different apertures. (a)‒(c) Wavefronts measured by Shack-Hartmann sensor corresponding to respective apertures; (d)‒(f) wavefronts reconstructed by quadriwave lateral shearing interferometer using DZPF-AA; (g)‒(i) errors of reconstructed wavefronts relative to wavefronts obtained by Shack-Hartmann sensor
Get Citation
Copy Citation Text
Tao Wang, Xiting Han, Yanqiu Li, Ke Liu. Reconstruction of Wavefronts with Arbitrary Aperture Using Multi-Directional Difference Zernike Polynomial Fitting[J]. Acta Optica Sinica, 2025, 45(7): 0726001
Category: Physical Optics
Received: Dec. 11, 2024
Accepted: Jan. 20, 2025
Published Online: Apr. 27, 2025
The Author Email: Ke Liu (liuke@bit.edu.cn)
CSTR:32393.14.AOS241882