Chinese Journal of Lasers, Volume. 49, Issue 21, 2100001(2022)
Ytterbium-Doped Core-Diameter-Variable Fiber Laser: Current Situation and Develop Tendency
[1] Hecht J. High-power fiber lasers[J]. Optics and Photonics News, 29, 30-37(2018).
[2] Xu B, Yin X Y, Zu C K et al. Preparation of sealing glass preforms by selective laser sintering[J]. Laser & Optoelectronics Progress, 55, 011416(2018).
[3] Duan M S, Wu F, Liu R X. Application of laser additive manufacturing technology in ophthalmology[J]. Laser & Optoelectronics Progress, 55, 011406(2018).
[4] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).
[5] Zervas M N. High power ytterbium-doped fiber lasers: fundamentals and applications[J]. International Journal of Modern Physics B, 28, 1442009(2014).
[6] Wang X L, Zhang H W, Yang B L et al. High-power ytterbium-doped fiber laser oscillator: current situation and future developments[J]. Chinese Journal of Lasers, 48, 0401004(2021).
[7] Li L B, Lou Q H, Zhou J et al. High power single transverse mode operation of a tapered large-mode-area fiber laser[J]. Optics Communications, 281, 655-657(2008).
[8] Shiraki K, Ohashi M, Tateda M. Suppression of stimulated Brillouin scattering in a fibre by changing the core radius[J]. Electronics Letters, 31, 668-669(1995).
[9] Filippov V, Chamorovskii Y, Kerttula J et al. Single-mode 212 W tapered fiber laser pumped by a low-brightness source[J]. Optics Letters, 33, 1416-1418(2008).
[10] Zhu Y, Eschrich T, Leich M et al. Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement[J]. Laser Physics, 27, 105103(2017).
[11] Gumenyuk R, Filippov V, Vorotinskii A et al. All-fiber, high-power, picosecond Yb double clad tapered fiber amplifier[C](2014).
[12] Kerttula J, Filippov V, Chamorovskii Y et al. Actively Q-switched 1.6-mJ tapered double-clad ytterbium-doped fiber laser[J]. Optics Express, 18, 18543-18549(2010).
[13] Shi C, Wang X L, Zhou P et al. Theoretical study of mode evolution in active long tapered multimode fiber[J]. Optics Express, 24, 19473-19490(2016).
[14] Filippov V, Chamorovskii Y, Kerttula J et al. 600 W power scalable single transverse mode tapered double-clad fiber laser[J]. Optics Express, 17, 1203-1214(2009).
[15] Zeng L F, Xi X M, Ye Y et al. Near-single-mode 3 kW monolithic fiber oscillator based on a longitudinally spindle-shaped Yb-doped fiber[J]. Optics Letters, 45, 5792-5795(2020).
[16] Ye Y, Xi X M, Shi C et al. Comparative study on transverse mode instability of fiber amplifiers based on long tapered fiber and conventional uniform fiber[J]. Laser Physics Letters, 16, 085109(2019).
[17] Filippov V, Kerttula J, Chamorovskii Y et al. Actively Q-switched ytterbium tapered fiber laser[J]. Proceedings of SPIE, 7914, 79141Y(2011).
[18] Zhang H, Lei C M, Li Z X et al. 19 × 1 high power pump combiner with large input core diameter[J]. Laser Physics, 31, 035105(2021).
[19] Tan Q R, Ge T W, Zhang X X et al. Cascaded combiners for a high power CW fiber laser[J]. Laser Physics, 26, 025102(2016).
[20] Liu K, Zhao C, Yang Y F et al. Low beam quality degradation, high-efficiency pump and signal combiner by built-in mode field adapter[J]. Applied Optics, 56, 2804-2809(2017).
[21] Liu Y L, Liu K, Yang Y F et al. High power pump and signal combiner for backward pumping structure with two different fused fiber bundle designs by means of pretapered pump fibers[J]. Optics Express, 29, 13344-13358(2021).
[22] Cui Z J[D]. Fabrication and experimental research of tapered optical fiber(2017).
[23] Zhang Y[D]. Fabrication and sensing characteristic of tapered fiber Bragg grating(2008).
[24] Zhu C Y[D]. Long-period fiber grating fabricated by arc tapering(2009).
[25] Luo A P, Gao K, Liu F et al. Evanescent-field coupling based on long-period grating and tapered fiber[J]. Acta Optica Sinica, 24, 1603-1606(2004).
[26] Lee T, Jung Y, Codemard C A et al. Broadband third harmonic generation in tapered silica fibres[J]. Optics Express, 20, 8503-8511(2012).
[27] Tang Z J, Lian Z G, Benson T M et al. High performance tunable dual-wavelength erbium-doped fiber laser implemented by using tapered triple-core photonic crystal fiber[J]. IEEE Access, 8, 121833-121842(2020).
[28] Xu Z, Yu C B, Huang W et al. Tunable multi-wavelength Er-doped fiber laser based on a fiber taper[J]. Journal of Optics, 20, 085701(2018).
[29] Ibarra-Escamilla B, Hernández-Arriaga M V, Durán-Sánchez M et al. Abrupt-tapered fiber filter arrangement for a switchable multi-wavelength and tunable Tm-doped fiber laser[J]. Optics Express, 26, 14894-14904(2018).
[30] Han H Y, Li X L, Zhang S M et al. Precise wavelength control of Yb-doped fiber laser using fused tapered fiber technology[J]. Journal of Lightwave Technology, 37, 715-721(2019).
[31] Luo Z Q, Huang Y Z, Wang J Z et al. Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper[J]. IEEE Photonics Technology Letters, 24, 1539-1542(2012).
[32] Jiang T X, Wang A M, Wang G Z et al. Tapered photonic crystal fiber for simplified Yb∶ fiber laser frequency comb with low pulse energy and robust f ceo singals[J]. Optics Express, 22, 1835-1841(2014).
[33] Han M M, Li X L, Zhang S M et al. Tunable and channel spacing precisely controlled comb filters based on the fused taper technology[J]. Optics Express, 26, 265-272(2018).
[34] Xie Y, Han H N, Zhang L et al. Yb-doped fiber comb based on a tapered single-mode fiber[C](2015).
[35] Kerttula J, Filippov V, Chamorovskii Y et al. 250 μJ broadband supercontinuum generated using a Q-switched tapered fiber laser[J]. IEEE Photonics Technology Letters, 23, 380-382(2011).
[36] Campling J, Horak P, Peacock A C. Designing silicon-core fiber tapers for efficient supercontinuum generation in the greenhouse gas absorption region[J]. Journal of the Optical Society of America B, 37, 1698-1706(2020).
[37] černe L, Novak J, Agrež V et al. Optimization of a supercontinuum source based on tapered ordinary fibers[J]. Laser Physics, 29, 025103(2019).
[38] Rusu M, Kivistö S, Gawith C et al. Red-green-blue (RGB) light generator using tapered fiber pumped with a frequency-doubled Yb-fiber laser[J]. Optics Express, 13, 8547-8554(2005).
[39] Rehan M, Kumar G, Rastogi V. Optimization of tapered fiber for the compression of femtosecond pulses at different wavelengths[C](2019).
[40] Zhang J, Ramana P V, Hon-Shing J L et al. Design and characterization of taper coupler for effective laser and single-mode fiber coupling with large tolerance[J]. IEEE Photonics Technology Letters, 20, 1375-1377(2008).
[41] Jedrzejczyk D, Asbahr P, Pulka M et al. Coupling of DBR tapered diode laser radiation into a single-mode-fiber at high powers[J]. Proceedings of SPIE, 8965, 89651A(2014).
[42] Jedrzejczyk D, Sahm A, Carstens C et al. Coupling of a high-power tapered diode laser beam into a single-mode-fiber within a compact module[J]. Proceedings of SPIE, 9348, 93480Z(2015).
[43] Huang W, Cui Y L, Li X Q et al. Low-loss coupling from single-mode solid-core fibers to anti-resonant hollow-core fibers by fiber tapering technique[J]. Optics Express, 27, 37111-37121(2019).
[44] Xie L Q, Fang F, Sun B et al. Wavelength switchable mode-locked fiber laser with tapered two-mode fiber[J]. IEEE Photonics Journal, 11, 7103508(2019).
[45] Xie L Q, Sun B, Chen et al. Sensitivity enhanced temperature sensor with serial tapered two-mode fibers based on the Vernier effect[J]. Optics Express, 28, 32447-32455(2020).
[46] He X P[D]. Research on fabrication and image-transmission performance of tapered fiber inverter(2019).
[47] Su X X[D]. The transmission characteristics of tapered optical fiber and application in the optical fiber probe(2011).
[48] Yu Z Q[D]. Propagation characteristics in tapered fiber and its applications(2009).
[49] Mao D, He Z W, Lu H et al. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers[J]. Optics Letters, 43, 1590-1593(2018).
[50] Li Z B, Wang Q, Xu S H et al. Iterative method for the design of LP0m mode converter[J]. Journal of Optics, 19, 095703(2017).
[51] Hosseini A, Covey J, Kwong D N et al. Tapered multi-mode interference couplers for high order mode power extraction[J]. Journal of Optics, 12, 075502(2010).
[52] Alvarez-Chavez J A, Grudinin A B, Nilsson J et al. Mode selection in high power cladding pumped fibre lasers with tapered section[C], 247-248(1999).
[53] Wang B L[D]. Research on sensing characteristics of tapered multimode fiber based on surface modified graphene(2020).
[54] Yu J H[D]. Research on the characteristics and application of optical fiber sensor based on double-cone Mach-Zehnder(2020).
[55] Zhang X P, Peng W, Shao L Y et al. Strain and temperature discrimination by using temperature-independent FPI and FBG[J]. Sensors and Actuators A: Physical, 272, 134-138(2018).
[56] Sun S J[D]. Research of tapered fiber Bragg grating magnetic field sensor based on magnetic fluid(2018).
[57] Miller J, Castaneda A, Lee K H et al. Biconically tapered fiber optic probes for rapid label-free immunoassays[J]. Biosensors, 5, 158-171(2015).
[58] Lokman A, Arof H, Harun S W. Tapered fiber coated with hydroxyethyl cellulose/polyvinylidene fluoride composite for relative humidity sensor[J]. Sensors and Actuators A: Physical, 225, 128-132(2015).
[59] Yan B L, Li X L, Zhang H W et al. Application of tapered fibers to free-space optical communication coupling system[J]. Optics and Precision Engineering, 27, 287-294(2019).
[60] Lin J W, Lei B, Lian C Y et al. Tapered fiber transmitting antenna for atmosphere laser communication[J]. High Power Laser and Particle Beams, 20, 1959-1964(2008).
[61] Guo L L, Wang Y, Wang K J. Optical taper of polymer optical fiber used in laser communication system[J]. Proceedings of SPIE, 6150, 615031(2006).
[62] Fischer U H P, Krips O, Mueller E et al. Laser microwelding for fiber-chip coupling modules with tapered standard monomode fiber ends for optical communication systems[J]. Optical Engineering, 41, 3221-3229(2002).
[63] Hutchens T C, Blackmon R L, Pierce B I M D et al. Comparison of detachable and tapered fiber optic tips for use in thulium fiber laser lithotripsy[J]. Proceedings of SPIE, 8565, 85651A(2013).
[64] Blackmon R L, Irby P B, Fried N M. A tapered distal fiber tip for thulium fiber laser lithotripsy[J]. Proceedings of SPIE, 7548, 75481F(2010).
[65] Wang T[D]. Research on single optical fiber tweezers technology based on graded-index multi-mode fiber(2019).
[66] Guo X N[D]. Research on optical control performance of optical tweezers based on t aper fiber and micro fiber(2018).
[67] Li Z Y[D]. Study on the trapping and manipulation of spherical particle by two-fiber conical optical tweezers with tunable microcavity(2017).
[68] Della Patria A, Pisanello M, Sileo L et al. Influence of laser beam quality on modal selection in tapered optical fibers for multipoint optogenetic control of neural activity[C](2016).
[69] Wang X L, Ye Y, Xi X M et al. One type of gain fiber with vary core diameter along the lengthways[P].
[70] Wang X L, Ye Y, Shi C et al. One type of all fiber laser oscillators based on gain fiber with vary core diameter along the lengthways[P].
[71] Zhang H W, Wang X L, Xu X J et al. Saddle-shaped gain fiber and all fiber laser oscillators based on saddle-shaped gain fiber[P].
[72] Xi X M, Lin X F, Ye Y et al. 3.4 kW all fiber laser oscillator based on novel spindle-shaped core rgain fiber[J]. Chinese Journal of Lasers, 47, 1216001(2020).
[73] Bobkov K, Levchenko A, Kashaykina T et al. Scaling of average power in sub-MW peak power Yb-doped tapered fiber picosecond pulse amplifiers[J]. Optics Express, 29, 1722-1735(2021).
[74] Shi C, Wang X L, Zhou P et al. Theoretical study of stimulated Raman scattering in long tapered fiber amplifier[J]. Chinese Optics Letters, 15, 110605(2017).
[75] Filippov V, Chamorovskii Y K, Golant K M et al. Optical amplifiers and lasers based on tapered fiber geometry for power and energy scaling with low signal distortion[J]. Proceedings of SPIE, 9728, 97280V(2016).
[76] Filippov V, Chamorovskii Y, Kerttula J et al. 750-W double-clad ytterbium tapered fiber laser with nearly theoretically limited efficiency[J]. Proceedings of SPIE, 7580, 758017(2010).
[77] Filippov V, Chamorovskii Y, Kerttula J et al. Double clad tapered fiber for high power applications[J]. Optics Express, 16, 1929-1944(2008).
[78] Zhang R R[D]. Research on preparation equipment of novel long-tapered fiber(2010).
[79] Lin X F, Zhang Z L, Chu Y B et al. Fabrication and laser performance of cladding uniform core tapered fiber[J]. Optical Fiber Technology, 64, 102561(2021).
[80] Huang Z H, Tang X, Lin H H et al. Tapered cladding diameter profile design for high-power tandem-pumped fiber lasers[J]. Laser Physics, 26, 055101(2016).
[81] Huang Z H, Zhang Y L, Deng Y et al. Tapered inner-cladding fiber design for uniform heat deposition in Ytterbium-doped fiber amplifiers[J]. Journal of Optics, 17, 045701(2015).
[82] Stiller B, Lee M W, Delqué M et al. Suppression of SBS in a photonic crystal fiber with periodically-varied core diameter[C], OMO5(2011).
[83] Trikshev A I, Kurkov A S, Tsvetkov V B et al. 160 W single-frequency laser based on active tapered double-clad fiber amplifier[C](2013).
[84] Trikshev A I, Kurkov A S, Tsvetkov V B et al. A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier[J]. Laser Physics Letters, 10, 065101(2013).
[85] Zhou Z C, Zhang H W, Wang X L et al. All-fiber-integrated single frequency tapered fiber amplifier with near diffraction limited output[J]. Journal of Optics, 18, 065504(2016).
[86] Pierre C, Guiraud G, Vinçont C et al. 120 W single frequency laser based on short active double clad tapered fiber[C](2017).
[87] Pierre C, Guiraud G, Yehouessi J P et al. 200-W single frequency laser based on short active double clad tapered fiber[J]. Proceedings of SPIE, 10512, 105122A(2018).
[88] Noronen T, Fedotov A, Rissanen J et al. Ultra-large mode area single frequency anisotropic MOPA with double clad Yb-doped tapered fiber[J]. Proceedings of SPIE, 10512, 105121T(2018).
[89] Huang L, Zhou Z C, Shi C et al. Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser[J]. Science China Technological Sciences, 61, 971-981(2018).
[90] Lai W C, Ma P F, Liu W et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber[J]. Optics Express, 28, 20908-20919(2020).
[91] Huang L, Lai W C, Ma P F et al. Tapered Yb-doped fiber enabled monolithic high-power linearly polarized single-frequency laser[J]. Optics Letters, 45, 4001-4004(2020).
[92] An Y, Pan Z Y, Yang H et al. 400-W single-mode single-frequency laser output from homemade tapered fiber[J]. Acta Physica Sinica, 70, 204204(2021).
[93] Koptev M Y, Anashkina E A, Bobkov K K et al. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses[J]. Quantum Electronics, 45, 443-450(2015).
[94] Mu X D, Steinvurzel P, Belden P et al. Nanosecond-pulsed, mJ-level single-mode fiber master oscillator power amplifier with polarization maintaining tapered gain fiber[C], LW3B.2(2016).
[95] Filippov V, Vorotynskii A, Noronen T et al. Picosecond MOPA with ytterbium doped tapered double clad fiber[J]. Proceedings of SPIE, 10083, 100831H(2017).
[96] Roy V, Paré C, Labranche B et al. Yb-doped large mode area tapered fiber with depressed cladding and dopant confinement[J]. Proceedings of SPIE, 10083, 1008314(2017).
[97] Zhu Y, Lorenz M, Leich M et al. Laser peak power scaling and beam quality improvement with a tapered ytterbium rod-type amplifier made by powder sinter technology[C](2017).
[98] Bobkov K, Andrianov A, Koptev M et al. Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier[J]. Optics Express, 25, 26958-26972(2017).
[99] Noronen T, Gumenyuk R, Chamorovskii Y et al. Ultrafast picosecond MOPA With Yb-doped tapered double clad fiber[C](2017).
[100] Bobkov K, Levchenko A, Aleshkina S et al. 1.5 MW peak power diffraction limited monolithic Yb-doped tapered fiber amplifier[C](2017).
[101] Noronen T, Gumenyuk R, Chamorovskii Y et al. Anisotropic ultra-large mode area Yb-doped tapered double clad fiber for ultrafast amplifiers[C], JTu2A.51(2017).
[102] Khudyakov M M, Levchenko A E, Velmiskin V V et al. 107-kW-peak-power 2-ns pulse tapered Er-doped fiber amplifier[C](2018).
[103] Zhu Y, Leich M, Lorenz M et al. Yb-doped large mode area fiber for beam quality improvement using local adiabatic tapers with reduced dopant diffusion[J]. Optics Express, 26, 17034-17043(2018).
[104] Fedotov A, Noronen T, Gumenyuk R et al. Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers[J]. Optics Express, 26, 6581-6592(2018).
[105] Fedotov A, Ustimchik V, Rissanen J et al. Large-mode-area double clad ytterbium-doped tapered fiber with circular birefringence[J]. Proceedings of SPIE, 11665, 116651T(2019).
[106] Huang L, Lai W C, Su R T et al. Monolithic linearly polarized nanosecond fiber laser with record peak power and near-transform-limited linewidth[C](2019).
[107] Bobkov K K, Levchenko A E, Velmiskin V V et al. High peak and average power Yb-doped tapered fiber amplifier[C], SM4E.2(2019).
[108] Andrianov A V, Koptev M Y, Anashkina E A et al. Tapered erbium-doped fibre laser system delivering 10 MW of peak power[J]. Quantum Electronics, 49, 1093-1099(2019).
[109] Bobkov K K, Levchenko A E, Velmiskin V V et al. 71 W average power sub-MW peak power diffraction-limited monolithic tapered fiber amplifier[C](2019).
[110] Petrov A, Odnoblyudov M, Gumenyuk R et al. Picosecond Yb-doped tapered fiber laser system with 1.26 MW peak power and 200 W average output power[J]. Scientific Reports, 10, 17781(2020).
[111] Leich M, Kalide A, Eschrich T et al. 2 MW peak power generation in fluorine co-doped Yb fiber prepared by powder-sinter technology[J]. Optics Letters, 45, 4404-4407(2020).
[112] Guesmi K, Mugnier A, Canat G et al. Simple design for high energy femtosecond tapered double clad fiber amplifier[J]. Proceedings of SPIE, 11665, 1166517(2021).
[113] Scol F, Bouwmans G, Hugonnot E. High-energy, narrow-linewidth, flat-top temporal profile nanosecond-pulses from ytterbium-doped tapered fiber amplifier with chirped-diode seeding[J]. OSA Continuum, 4, 1162-1169(2021).
[114] Petrov A, Mikhailovsky G, Gorbatchev A et al. High-power and pulse energy picosecond narrow linewidth laser system based on tapered fiber amplifier for second harmonic generation[J]. Proceedings of SPIE, 11665, 116651D(2021).
[115] Patokoski K, Rissanen J, Noronen T et al. Single-frequency 100 ns/0.5 mJ laser pulses from all-fiber double clad ytterbium doped tapered fiber amplifier[J]. Optics Express, 27, 31532-31541(2019).
[116] Fedotov A, Ustimchik V, Chamorovskii Y et al. Low-birefringence active tapered fibers for high-power applications[C], SoTu2H.7(2020).
[117] Fedotov A, Ustimchik V, Rissanen J et al. Active tapered double-clad fiber with low birefringence[J]. Optics Express, 29, 16506-16519(2021).
[118] Fedotov A, Ustimchik V, Rissanen J et al. Large mode area double-clad ytterbium-doped tapered fiber with low birefringence[J]. Proceedings of SPIE, 11665, 116651T(2021).
[119] Bobkov K K, Aleshkina S S, Khudyakov M M et al. Active tapered fibers for high peak power fiber lasers[J]. Proceedings of SPIE, 11773, 117730F(2021).
[120] Huang L, Ma P F, Su R T et al. Comprehensive investigation on the power scaling of a tapered Yb-doped fiber-based monolithic linearly polarized high-peak-power near-transform-limited nanosecond fiber laser[J]. Optics Express, 29, 761-782(2021).
[121] Filippov V, Chamorovskii Y, Kerttula J et al. High-power single-mode tapered double-clad ytterbium fiber laser pumped by diode-laser bar[J]. Proceedings of SPIE, 7195, 719506(2009).
[122] Filippov V, Kerttula J, Chamorovskii Y et al. Highly efficient 750 W tapered double-clad ytterbium fiber laser[J]. Optics Express, 18, 12499-12512(2010).
[123] Kerttula J, Filippov V, Chamorovskii Y et al. Tapered fiber amplifier with high gain and output power[J]. Laser Physics, 22, 1734-1738(2012).
[124] Shi C[D]. The study of high power long tapered fiber amplifiers(2017).
[125] Shi C, Zhang H W, Wang X L et al. kW-class high power fiber laser enabled by active long tapered fiber[J]. High Power Laser Science and Engineering, 6, e16(2018).
[126] Zhang H W, Yang B L, Wang X L et al. High power all-fiberized oscillator based on tapered fiber[C], Th3D.4(2018).
[127] Yang B L, Zhang H W, Shi C et al. High power monolithic tapered ytterbium-doped fiber laser oscillator[J]. Optics Express, 27, 7585-7592(2019).
[128] Lin X F, Cheng Y S, Wang Y B et al. Ytterbium-doped fiber with tapered core and uniform cladding[C], SF1P.3(2020).
[129] Kerttula J, Filippov V, Chamorovskii Y et al. A comparative study of tapered fiber laser configurations[J]. Proceedings of SPIE, 8237, 82370W(2012).
[130] Zeng L F, Xi X M, Ye Y et al. A 1.8 kW fiber laser oscillator employing a section of spindle-shaped core ytterbium-doped fiber[J]. Laser Physics Letters, 17, 095104(2020).
[131] Ye Y, Lin X F, Xi X M et al. 2 kW monolithic fiber amplifier based on constant-cladding tapered-core Yb-doped fiber[J]. Proceedings of SPIE, 11717, 1171735(2020).
[132] Ye Y, Lin X F, Xi X M et al. Novel constant-cladding tapered-core ytterbium-doped fiber for high-power fiber laser oscillator[J]. High Power Laser Science and Engineering, 9, e21(2021).
[133] Xi X M, Zeng L F, Ye Y et al. Single mode 3 kW all fiber laser oscillator employing home made double tapered fiber[J]. Chinese Journal of Lasers, 47, 0916001(2020).
[134] An Y, Yang H, Xiao H et al. 4-kW single-mode laser output using homemade double-tapered fiber[J]. Chinese Journal of Lasers, 48, 0115002(2021).
[135] Zeng L F, Pan Z Y, Xi X M et al. 5 kW monolithic fiber amplifier employing homemade spindle-shaped ytterbium-doped fiber[J]. Optics Letters, 46, 1393-1396(2021).
[136] Zeng L F, Xi X M, Ye Y et al. A novel fiber laser oscillator employing saddle-shaped core ytterbium-doped fiber[J]. Applied Physics B, 126, 185(2020).
[137] Gao S, Zhang L, Xu Y P et al. Tapered fiber based Brillouin random fiber laser and its application for linewidth measurement[J]. Optics Express, 24, 28353-28360(2016).
[138] Zhang H W, Du X Y, Zhou P et al. Tapered fiber based high power random laser[J]. Optics Express, 24, 9112-9118(2016).
[139] Lou Z K, Jin X X, Zhang H W et al. High power, high-order random Raman fiber laser based on tapered fiber[J]. IEEE Photonics Journal, 9, 7100406(2017).
[140] Zhang H W, Ye J, Zhou P et al. Tapered-fiber-enabled high-power, high-spectral-purity random fiber lasing[J]. Optics Letters, 43, 4152-4155(2018).
[141] Leich M, Jäger M, Grimm S et al. Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power[J]. Laser Physics Letters, 11, 045102(2014).
[142] Leich M, Jäger M, Grimm S et al. Tapered single-mode Yb-fiber laser at 976 nm[C], SoM3B.6(2014).
[143] Ustimchik V, Fedotov A, Rissanen J et al. Green picosecond narrow-linewidth tapered fiber laser system[J]. Proceedings of SPIE, 11260, 112601Y(2020).
[144] Roy V, Desbiens L, Deladurantaye M et al. High power UV pulsed laser with LMA tapered fiber[J]. Proceedings of SPIE, 11260, 112601W(2020).
[145] Kuznetsov I I, Mukhin I B, Palashov O V. Thin-tapered-rod Yb∶YAG amplifier for fiber oscillator[C](2016).
[146] Kuznetsov I, Mukhin I, Vadimova O et al. Thin-rod and thin-tapered-rod ytterbium amplifiers for fiber lasers[C](2017).
[147] Chizhov S A, Kuznetsov I I, Mukhin I B et al. Comparison of thin-tapered-rod and thin-rod Yb∶YAG laser amplifiers at high average power operation[C](2020).
[148] Fan X Y, Liu J J. New simplified coupling system of 15 MW Nd∶YAG laser pulse with 600 μm optical fiber by use of a taper fiber[J]. Proceedings of SPIE, 7282, 494-499(2009).
[149] Tang C, Tong L X, Xie G et al. Tapered fiber phase conjugator for high-power all-solid lasers with high repetition rate[J]. Proceedings of SPIE, 8433, 843318(2012).
[150] Moore S W, Soh D B S, Bisson S E et al. A high-energy cladding-pumped 80 nanosecond Q-switched fiber laser using a tapered fiber saturable absorber[J]. Proceedings of SPIE, 8601, 86011N(2013).
[151] Rehan M, Kumar G, Rastogi V. Optimization of tapered large mode area fiber for compression of high peak power ultrashort pulses[C], 21a_221B_7(2018).
[155] Wan Y C, Xi X M, Yang B L et al. Enhancement of TMI threshold in Yb-doped fiber laser by optimizing pump wavelength[J]. IEEE Photonics Technology Letters, 33, 656-659(2021).
[156] Yang B L, Wang P, Zhang H W et al. 6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability[J]. Optics Express, 29, 26366-26374(2021).
[157] Yang B L, Zhang H W, Shi C et al. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability[J]. Journal of Optics, 20, 025802(2018).
Get Citation
Copy Citation Text
Xiaolin Wang, Yujun Wen, Hanwei Zhang, Xiaoming Xi, Chen Shi, Baolai Yang, Peng Wang, Zhiyong Pan, Zefeng Wang, Xiaojun Xu, Jinbao Chen. Ytterbium-Doped Core-Diameter-Variable Fiber Laser: Current Situation and Develop Tendency[J]. Chinese Journal of Lasers, 2022, 49(21): 2100001
Category: reviews
Received: Nov. 10, 2021
Accepted: Mar. 8, 2022
Published Online: Nov. 9, 2022
The Author Email: Xiaolin Wang (chinaphotonics@163.com), Zhiyong Pan (panzy168@163.com)