Chinese Journal of Lasers, Volume. 49, Issue 21, 2100001(2022)

Ytterbium-Doped Core-Diameter-Variable Fiber Laser: Current Situation and Develop Tendency

Xiaolin Wang1,2,3、*, Yujun Wen1, Hanwei Zhang1,2,3, Xiaoming Xi1,2,3, Chen Shi1,2,3, Baolai Yang1,2,3, Peng Wang1,2,3, Zhiyong Pan1,2,3、**, Zefeng Wang1,2,3, Xiaojun Xu1,2,3, and Jinbao Chen1,2,3
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, HuNan, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, HuNan, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, HuNan, China
  • show less
    Figures & Tables(39)
    Structural diagrams of fiber with variable core diameter. (a) Single-tapered fiber; (b) spindle-shaped fiber;(c) saddle-shaped fiber
    Brillouin frequency shifts for fibers with different core diameters[8]
    Differences in propagation constants for different modes in fibers with different core diameters[75]
    Ray traces of large angle ASE in tapered gain fiber[77]
    Steps for preparation of fiber with variable core diameter based on preform shape control[79]
    Steps for preparation of gain fiber with variable core diameter based on drawing with variable speed
    Steps for preparation of gain fiber with variable core diameter based on preform shape control and drawing with variable speed
    Cladding diameter versus fiber length[82]
    Experimental results of tapered Yb-doped all-fiber single frequency amplifer[85]. (a) Output power and backward power versus pump power; (b) beam quality at each output power
    Femtosecond pulsed laser system based on tapered fiber[112]
    Laser beam quality using non-tapered Yb-doped fiber or tapered Yb-doped fiber[103]
    Characteristics of panda-type polarization-maintaining fiber[104]. (a) Cross-section of panda-type polarization-maintaining tapered Yb-doped fiber; (b) fiber cladding diameter versus fiber length
    Output characteristics of linearly polarized laser[110]. (a) Extinction ratios at different output powers; (b) beam qualities at different output powers
    Characteristics of spun tapered Yb-doped fiber[105]. (a) Cladding diameter of spun tapered Yb-doped fiber versus length with fiber end face shown in inset; (b) spun pitch versus cladding diameter with side view of spun tapered fiber shown in inset
    Structural diagrams of laser based on saddle-shaped fiber[52]. (a) Structural diagram of laser; (b) structural diagram of saddle-shaped fiber
    Output spot morphologies of fiber laser under different conditions[7]. (a) Without saddle-shaped fiber; (b) with saddle-shaped fiber
    Output power versus pump power with beam pattern at 1.39 kW output power shown in inset[125]
    Beam quality versus output power for different fiber amplifers[16]. (a) Based on uniform core fiber; (b) based on tapered fiber
    Characteristics of Yb-doped fiber with variable core diameter[128]. (a) Refractive index profile of Yb-doped fiber preform; (b) core diameter versus gain fiber length
    Output charateristics of tapered fiber amplifier[79].(a) Powers and efficiencies of laser when large end and small end are output of amplifier ; (b) spectra of laser when large end and small end are output of amplifier
    Structure and output characteristic of spindle-shaped fiber[130]. (a) Profile of spindle-shaped gain fiber; (b) beam quality characteristics under different powers
    Structure and output characteristics of spindle-shaped Yb-doped fiber[15]. (a) Fiber core/cladding diameter of spindle-shaped Yb-doped fiber versus fiber length; (b) beam quality and beam profile at 3004 W output power
    Structure and output characteristics of spindle-shaped Yb-doped fiber[134]. (a) Cladding diameter of spindle-shaped Yb-doped fiber versus fiber length; (b) output power and beam quality versus pump power with beam profile at 4006 W output power shown in inset
    Structure and output characteristics of spindle-shaped Yb-doped fiber[135]. (a) Schematic of core diameter and cladding diameter of spindle-shaped Yb-doped fiber versus fiber length; (b) output power and efficiency versus pump power
    Structure and output characteristic of saddle-shaped Yb-doped fiber[136]. (a) Core diameter of saddle-shaped fiber versus length; (b) beam quality and bem profile at 1312 W output power
    Powers of each order Stokes light and residual pump light of random fiber laser based on tapered fiber with dependence of effective mode field area on fiber length shown in inset[138]
    Principle diagram of 976 nm fiber laser based on tapered fiber[141]
    Experimental setup of 1064 nm fiber amplifier and second harmonic frequency variable laser based on tapered fiber[143]
    Output characteristics of laser amplifier based on large mode tapered fiber[144]. (a) Beam quality of UV light at different average powers; (b) powers of 1064 nm near-infrared (NIR) light, second harmonic generation (SHG) 532 nm green light, and 355 nm ultraviolet (UV) light versus time
    Structure and output characteristics of Yb∶YAG crystal[145]. (a) Schematics of thin-rod and thin-tapered-rod Yb∶YAG crystals; (b) gain of narrowband or wideband small signal at 1030 nm in Yb∶YAG crystal
    Small signal gain in thin-rod or thin-tapered-rod Yb∶YAG crystal[146]
    Principle diagram of Nd∶YAG amplifier based on tapered fiber[151]
    Structural diagram of 10 kW-level near-single-mode fiber amplifier based on fiber with variable core diameter[6]
    • Table 1. Typical research results of single frequency/narrow linewidth fiber laser based on single-tapered gain fiber

      View table

      Table 1. Typical research results of single frequency/narrow linewidth fiber laser based on single-tapered gain fiber

      YearFiber parameterPowerLinewidthBeam qualityReference
      Fiber core/cladding diameter at small endFiber core/cladding diameter at large endNAFiber length
      2008~5.6 μm /174 μm27 μm /834 μm0.15(in core)10.5 m10 W100 kHzM2≈1.07[77]
      20137.5 μm /120 μm44 μm /700 μm0.11(in core)/0.40 (in cladding)18 m160 W3 MHzMx2 =1.05[83-84]
      My2=1.20
      201620 μm /237.1 μm46.9 μm /579.9 μm0.06( in core)7 m53 W20 kHzMx2=1.25[85]
      My2=1.20
      20179 -22 μm (fiber core diameter)  2.5 m120 W<30 kHzM2≈1.1[86]
      201850-400 μm(fiber cladding diameter)  2.7 m200 W<30 kHzM2≈1.2[87]
      201813 μm /110 μm96 μm /792 μm  70 W8 kHzMx2=1.03[88]
      My2=1.08
      201820 μm /237.1 μm46.9 μm /579.9 μm0.06 (in core)7.2 m260 W2 GHzM2≈2.27[89]
      202036.1 μm /249.3 μm57.8 μm /397.3 μm0.064 (in core)1.27 m550 W~20 kHzM2≈1.47[90-91]
      202130.3 μm /245 μm49.3 μm /404 μm0.06 (in core)2.2 m400 WM2≈1.29[92]
    • Table 2. Typical research results of high power non-linearly-polarized pulsed fiber laser based on tapered gain fiber

      View table

      Table 2. Typical research results of high power non-linearly-polarized pulsed fiber laser based on tapered gain fiber

      YearFiber parameterOutput parameterBeam qualityReference
      Fiber core /cladding diameter at small endFiber core /cladding diameter at large endNAFiber lengthWavelengthRepetition frequencyPulse widthPulse energyAverage/peak power
      2008~5.6 μm/174 μm27 μm/834 μm0.1510.5 m1063 nm100 MHz4 ps 10.7 W/25 kWM2≈1.07[77]
      2010~15 μm/160 μm~83 μm/880 μm0.11 (in core)/0.22 (in cladding)6.3 m1065 nm5 Hz64 ns1.6 mJ24.3 kW(peak power)M2≈2.7[1217]
      2014~9 μm/145 μm50 μm/800 μm 4 m1038 nm 6 ps2.5 μJ60 W/0.4 MW[11]
      201510 μm/80 μm45 μm/430 μm 2.1 m1040 nm1 MHz130 fs 2.5 MW after compression(peak power)[93]
      201625 μm/250 μm60 μm/600 μm 2 m1064 nm10 kHz3 ns1 mJ10.2 W/340 kWM2≈1.07[94]
      201613 μm(core diameter)100 μm(core diameter)0.11(in core)6 m1040 nm10 kHz60 ps280 μJ5 MW(peak power)M2≈1.22[7595]
      201735 μm/250 μm56 μm/400 μm0.072.8 m1064 nm  50 μJ 1.5 MW(peak power)M2<1.2[96]
      20176.9 μm/29 μm45 μm/190 μm 68 cm1030 nm20 kHz2 ns0.57 mJ11.4 W/167 kWM2<2.6[97]
      20176.5 μm/53 μm56 μm/460 μm 60 cm1030 nm20 kHz2 ns0.5 mJ10 W/230 kWM2≈3.3[10]
      2017~10 μm/72.5 μm62 μm/450 μm0.282 m1064 nm1 MHz8 ps 0.76 MW/22 MW after compression[98]
      201718 μm/145 μm100 μm/800 μm 4 m 20 MHz60 ps0.3 mJ5 MW(peak power)M2≈1.08[99]
      201720 μm(core diameter)67 μm(core diameter)0.095(in core)2.2 m1064 nm1 MHz7 ps 1.5 MW(peak power)[100]
      201713.2 μm/110 μm96 μm/792 μm  1030 nm20 MHz,20 kHz80 ps,60 ps0.3 mJ70 W(average power)[101]
      201822.5 μm/90 μm86 μm/350 μm~0.3(in cladding)2.5 m1550 nm5 kHz2 ns0.25 mJ19 W/107 kWM2<1.27[102]
      201812 μm/53 μm45 μm/200 μm0.09(in core)/0.19(in cladding)50 cm1030 nm20 kHz2 ns0.78 mJ15.5 W/375 kWM2<1.7[103]
      201813.3 μm/110 μm96 μm/792 μm0.11 (in core)~3.6 m1040 nm1 MHz90 ps28 μJ28 W/292 kWM2≈1.09[104]
      201935 μm/280 μm100 μm/800 μm0.1 (in core)~3.4 m1035 nm14.8 MHz50 ps 55 W(average power)M2<1.18[105]
      201936 μm/250 μm58 μm/560 μm0.064(in core)/0.5(in cladding)0.74 m 80 kHz3.8 ns110 μJ8.8 W/30 kWM2≈1.2[106]
      20198.6 μm/73 μm65 μm/550 μm0.09 (in core)2.7 m1064 nm10 MHz8 ps 44 W/550 kWM2≈1.26[107]
      201922 μm/75 μm75 μm/256 μm0.3( in cladding)3.2 m1560 nm100 kHz500 fs10 μJ10 MW after compression(peak power)[108]
      20197.2 μm/57 μm43 μm/344 μm0.28 (in cladding)~3 m1064 nm10 MHz12.2 ps 71 W/820 kWM2<1.17[109]
      202010 μm/100 μm50 μm/100 μm0.09(in core)/0.28(in cladding)2.5 m1040 nm100 kHz48.8 ps65 μJ7.5 W/1.26 MWM2≈1.3[110]
      20208.5 μm/35.7 μm52 μm/226.8 μm0.088(in core)4 cm1030 nm250 kHz28 ps 2.3 MW(peak power)M2≈1.3[111]
      202110 μm/80 μm~45 μm/435 μm0.09(in core)/0.28(in cladding)~2.6 m1036 nm250 kHz412 fs40 μJ97 MW after compression(peak power)Diffraction limited[112]
      202110 μm/70 μm59 μm/432 μm 2.5 m1053 nm5 kHz3 ns 170 kW(peak power)M2≈1.11[113]
      202110 μm/100 μm50 μm/500 μm 3 m1064 nm10 MHz50 ps9 μJ150 W/170 kWM2≈1.19[114]
    • Table 3. Typical research results of high power pulsed fiber laser based on linearly-polarized fiber with variable core diameter

      View table

      Table 3. Typical research results of high power pulsed fiber laser based on linearly-polarized fiber with variable core diameter

      YearFiber parameterOutput parameterBeam qualityReference
      Fiber core /cladding diameter at small endFiber core /cladding diameter at large endNAFiber lengthWavelengthRepetition frequencyPulse widthPulse energyAverage/peak powerPER or DOP
      201720 μm(core diameter) 67 μm(core diameter)0.095(in core)2.2 m1064 nm1 MHz7 ps 1.5 MW(peak power) [100]
      201713.2 μm/110 μm96 μm/792 μm  1030 nm20 MHz,20 kHz80 ps,60 ps0.3 mJ70 W(average power) [101]
      201813.3 μm/110 μm96 μm/792 μm~0.11(in core)~3.6 m1040 nm1 MHz90 ps28 μJ28 W/292 kW M2≈1.09[104]
      201935 μm/280 μm100 μm/800 μm0.1(in core)~3.4 m1035 nm14.8 MHz50 ps 55 W(average power) M2<1.18[105]
      201917 μm/170 μm49 μm/490 μm0.08(in core)1.2 m1053 nm10 kHz130 ns288 μJ,524 μJ2.2 kW(peak power),4 kW(peak power) M2<1.08[115]
      20197.2 μm/57 μm43 μm/344 μm0.28(in cladding)~3 m1064 nm10 MHz12.2 ps 71 W/820 kW M2<1.17[109]
      202015 μm/120 μm35 μm/285 μm 2.8 m1035 nm14.8 MHz50 ps 72.5 W(average power)PER>17 dBM2≤1.18[116]
      202115 μm/120 μm35 μm/285 μm 3 m1040 nm20 MHz50 ps2.5 μJ50 W/47 kWDOP of 98%M2≤1.18[117]
      20218 μm/90 μm44 μm/486 μm0.1(in core)/0.4(in cladding)6.7 m1062 nm100 MHz95 ps 64 W(average power)DOP of 95%M2≤1.2[118]
      20219.5 μm/68 μm46 μm/330 μm0.095(in core)/0.26(in cladding)2.45 m1064 nm9.2 MHz22 ps 150 W/0.74 MWPER of 13.5 dBM2≤1.14[73119]
      202136 μm/250 μm58 μm/400 μm0.064(in core)/0.5(in cladding)1.27 m1064 nm80 kHz3.8 ns110 μJ8.8 W/30 kWPER of 16 dBM2≈1.2[120]
    • Table 4. Typical research results of high power single-frequency/narrow linewidth pulsed fiber laser with variable fiber core diameter

      View table

      Table 4. Typical research results of high power single-frequency/narrow linewidth pulsed fiber laser with variable fiber core diameter

      Output parameterReference
      WavelengthLinewidthRepetition frequencyPulse widthPulse energyAverage/peak powerPER
       282.1 MHz80 kHz3.8 ns110 μJ8.8 W/30 kW16 dB[106120]
      1053 nm10 MHz10 kHz130 ns288 μJ2.2 kW(peak power)18.7 dB[115]
      1053 nm167 pm5 kHz3 ns 170 kW(peak power) [113]
    • Table 5. Typical research results of wide-spectrum high power fiber laser based on single-tapered gain fiber

      View table

      Table 5. Typical research results of wide-spectrum high power fiber laser based on single-tapered gain fiber

      YearFiber parameterPowerBeam qualityReference
      Fiber core/cladding diameter at small endFiber core/cladding diameter at large endNAFiber length
      2008~5.6 μm/174 μm27 μm/834 μm0.15(in core)10.5 m84 WM2≈1.07[77]
      20086.5 μm/200 μm27 μm/834 μm0.114(in core)/0.21(in cladding)12 m212 WM2=1.04[9]
      200910.8 μm/145 μm65 μm/835 μm0.07(in core)/0.22(in cladding)24 m600 WM2=1.08[14121]
      2010~17.7 μm/320 μm~51.6 μm/930 μm0.11(in core)/0.22(in cladding)23.5 m750 WM2=1.7[76122]
      2012~7.5 μm/120 μm44 μm/700 μm0.11(in core)/0.4(in cladding)18 m110 WM2≈1.06[123]
      201735 μm/250 μm56 μm/400 μm0.07(in core)2.8 m100 WM2≈1.15[96]
      201721.2 μm/417.3 μm30.4 μm/609.6 μm0.06(in core)/0.46(in cladding)33 m1470 WM2≈1.8[124-125]
      201820 μm/400 μm30 μm/600 μm0.06(in core)/0.46(in cladding)33 m260 WFundamental mode[126]
      2019~20 μm/400 μm~30 μm/600 μm0.065(in core)~33 m1700 WM2=2.1[127]
      2019~20 μm/400 μm~30 μm/600 μm0.065(in core)/0.46(in cladding)~22 m2170 WM2≈2.2[16]
      202031.2 μm/400 μm52.5 μm/400 μm0.065(in core)7 m364 WM2=1.63[79128]
    • Table 6. Typical research results of wide-spectrum high power fiber lasers based on spindle-shaped and saddle-shaped gain fibers

      View table

      Table 6. Typical research results of wide-spectrum high power fiber lasers based on spindle-shaped and saddle-shaped gain fibers

      YearFiber parameterPowerBeam qualityReference
      Fiber typeFiber core/cladding diameter at small endFiber core/cladding diameter in middleFiber core/cladding diameter at large endFiber length
      2020SPF20 μm/400 μm30 μm/600 μm20 μm/400 μm31 m1836 WM2≈1.65[130]
      2020SPF24.08 μm/400 μm31 μm/400 μm23.36 μm/400 μm25 m2023 WM2≈1.65[131]
      2020SPF24.08 μm/400 μm31 μm/400 μm23.36 μm/400 μm25 m3420 WM2≈1.7[72132]
      2020SPF20 μm/400 μm30 μm/600 μm20 μm/400 μm30.5 m3004 WM2≈1.3[15133]
      2021SPF22 μm/413 μm32 μm/600 μm22 μm/413 μm21 m4000 WM2≈1.33[134]
      2021SPF27 μm/410 μm39.5 μm/410 μm27 μm/410 μm21 m5008 WM2≈1.9[135]
      2020SAF30.77 μm/400 μm23.28 μm/400 μm30.77 μm/400 μm22.8 m1300 WM2≈2.0[136]
    Tools

    Get Citation

    Copy Citation Text

    Xiaolin Wang, Yujun Wen, Hanwei Zhang, Xiaoming Xi, Chen Shi, Baolai Yang, Peng Wang, Zhiyong Pan, Zefeng Wang, Xiaojun Xu, Jinbao Chen. Ytterbium-Doped Core-Diameter-Variable Fiber Laser: Current Situation and Develop Tendency[J]. Chinese Journal of Lasers, 2022, 49(21): 2100001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Nov. 10, 2021

    Accepted: Mar. 8, 2022

    Published Online: Nov. 9, 2022

    The Author Email: Xiaolin Wang (chinaphotonics@163.com), Zhiyong Pan (panzy168@163.com)

    DOI:10.3788/CJL202249.2100001

    Topics