Chinese Journal of Lasers, Volume. 44, Issue 1, 102002(2017)

Research Progress in Fabrication of Embedded Microball Lenses, Energy Devices and Biosensors by Femtosecond Laser Direct Writing

Zhou Weiping1、*, Wang Shutong2,3, Yu Yongchao2, Zheng Chong1,2,4, Li Ruozhou2, Hou Tingxiu1, Bai Shi1, Ma Delong1, Feng Guoying3, and Hu Anming1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(60)

    [1] Chichkov B N, Momma C, Nolte S et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 63, 109-115(1996).

    [2] Vorobyev A Y, Guo C L. Colorizing metals with femtosecond laser pulses[J]. Applied Physics Letters, 92, 041914(2008).

    [3] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 1, 217-224(2002).

    [4] Hu A, Rybachuk M, Lu Q B et al. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation[J]. Applied Physics Letters, 91, 131906(2007).

    [5] Hu A, Peng P, Alarifi H et al. Femtosecond laser welded nanostructures and plasmonic devices[J]. Journal of Laser Applications, 24, 042001(2012).

    [6] Zheng C, Hu A M, Chen T et al. Femtosecond laser internal manufacturing of three-dimensional microstructure devices[J]. Applied Physics A, 121, 163-177(2015).

    [7] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).

    [8] Zhao Y Y, Zheng M L, Dong X Z et al. Tailored silver grid as transparent electrodes directly written by femtosecond laser[J]. Applied Physics Letters, 108, 221104(2016).

    [9] Blasco E, Müller J, Müller P et al. Fabrication of conductive 3D gold-containing microstructures via direct laser writing[J]. Advanced Materials, 28, 3592-3595(2016).

    [10] Hu A, Li R, Bridges D et al. Photonic nanomanufacturing of high performance energy devices on flexible substrates[J]. Journal of Laser Applications, 28, 022602(2016).

    [11] Zhou W, Bai S, Ma Y et al. Laser direct writing of silver metal electrodes on transparent flexible substrates with high bonding strength[J]. ACS Applied Materials & Interfaces, 8, 24887-24892(2016).

    [12] Hooke R[M]. Micrographia London: J. Martyn and J. Allestry, 1665, 81-82.

    [13] Fujita T, Nishihara H, Koyama J. Fabrication of micro lenses using electron-beam lithography[J]. Optics Letters, 6, 613-615(1981).

    [14] Liau Z L, Diadiuk V, Walpole J N et al. Gallium phosphide microlenses by mass transport[J]. Applied Physics Letters, 55, 97-99(1989).

    [15] Ma N, Ashok P C, Stevenson D J et al. Integrated optical transfection system using a microlens fiber combined with microfluidic gene delivery[J]. Biomedical Optics Express, 1, 694-705(2010).

    [16] Wrzesniewski E, Eom S H, Cao W et al. Enhancing light extraction in top-emitting organic light-emitting devices using molded transparent polymer microlens arrays[J]. Small, 8, 2647-2651(2012).

    [17] Kato J I, Takeyasu N, Adachi Y et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Applied Physics Letters, 86, 044102(2005).

    [18] Buettner A, Zeitner U D. Wave optical analysis of light-emitting diode beam shaping using microlens arrays[J]. Optical Engineering, 41, 2393-2401(2002).

    [19] Siu C P B, Zeng H S, Chiao M. Magnetically actuated MEMS microlens scanner for in vivo medical imaging[J]. Optics Express, 15, 11154-11166(2007).

    [20] Roulet J C, Volkel R, Herzig H P et al. Performance of an integrated microoptical system for fluorescence detection in microfluidic systems[J]. Analytical Chemistry, 74, 3400-3407(2002).

    [21] Nussbaum P, Volkel R, Herzig H P et al. Design, fabrication and testing of microlens arrays for sensors and microsystems[J]. Pure and Applied Optics: Journal of the European Optical Society Part A, 6, 617-636(1997).

    [22] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).

    [23] Byun M, Han W, Li B et al. Guided organization of λ-DNA into microring arrays from liquid capillary bridges[J]. Small, 7, 1641-1646(2011).

    [24] Ishii Y, Koike S, Arai Y et al. Ink-jet fabrication of polymer microlens for optical-I/O chip packaging[J]. Japanese Journal of Applied Physics, 39, 1490-1493(2000).

    [25] Chang C Y, Yang S Y, Huang L S et al. Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold[J]. Infrared Physics & Technology, 48, 163-173(2006).

    [26] Chen F, Liu H W, Yang Q et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Optics Express, 18, 20334-20343(2010).

    [27] Ye X Z, Zhang F, Ma Y R et al. Brittle star-inspired microlens arrays made of calcite single crystals[J]. Small, 11, 1677-1682(2015).

    [28] Hou T X, Zheng C, Bai S et al. Fabrication, characterization, and applications of microlenses[J]. Applied Optics, 54, 7366-7376(2015).

    [29] Cheng Y, Tsai H L, Sugioka K et al. Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining[J]. Applied Physics A, 85, 11-14(2006).

    [30] Lin C H, Jiang L, Chai Y H et al. Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing[J]. Applied Physics A, 97, 751-757(2009).

    [31] Wu D, Xu J, Niu L G et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting[J]. Light: Science & Applications, 4, e228(2015).

    [32] Wang Z K, Sugioka K, Midorikawa K. Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing[J]. Applied Physics A, 89, 951-955(2007).

    [33] Zheng C, Hu A M, Li R Z et al. Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser[J]. Optics Express, 23, 17584-17598(2015).

    [34] Zheng C, Hu A M, Kihm K D et al. Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging[J]. Small, 11, 3007-3016(2015).

    [35] Futaba D N, Hata K, Yamada T et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials, 5, 987-994(2006).

    [36] Wu Z S, Parvez K, Feng X L et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities[J]. Nature Communications, 4, 2487(2013).

    [37] El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energystorage[J]. Nature Communications, 4, 1475(2013).

    [38] Gao W, Singh N, Song L et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology, 6, 496-500(2011).

    [39] El-Kady M F, Strong V, Dubin S et al. . Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 335, 1326-1330(2012).

    [40] Li R Z, Peng R, Kihm K D et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes[J]. Energy & Environmental Science, 9, 1458-1467(2016).

    [41] Bai S, Zhou W P, Lin Y H et al. Ultraviolet pulsed laser interference lithography and application of periodic structured Ag-nanoparticle films for surface-enhanced Raman spectroscopy[J]. Journal of Nanoparticle Research, 16, 2470-2477(2014).

    [42] Li R Z, Hu A, Bridges D et al. Robust Ag nanoplate ink for flexible electronics packaging[J]. Nanoscale, 7, 7368-7377(2015).

    [43] El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications, 4, 1475(2013).

    [44] Lin J, Peng Z W, Liu Y Y et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 5, 5714(2014).

    [45] Peng Z, Ye R, Mann J A et al. Flexible boron-doped laser-induced graphene microsupercapacitors[J]. ACS Nano, 9, 5868-5875(2015).

    [46] In J B, Hsia B, Yoo J H et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide[J]. Carbon, 83, 144-151(2015).

    [47] Cai J G, Lv C, Watanabe A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment[J]. Journal of Materials Chemistry A, 4, 1671-1679(2016).

    [48] Clerici F, Fontana M, Bianco S et al. In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 8, 10459-10465(2016).

    [49] Hugo E R, Brandebourg T D, Woo J G et al. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes[J]. Environmental Health Perspectives, 116, 1642-1647(2008).

    [50] Newbold R R, Jefferson W N, Padilla-Banks E. Prenatal exposure to bisphenol A at environmentally relevant doses adversely affects the murine female reproductive tract later in life[J]. Environmental Health Perspectives, 117, 879-885(2009).

    [51] Kafi M A, Kim T H, An J H et al. Electrochemical cell-based chip for the detection of toxic effects of bisphenol-A on neuroblastoma cells[J]. Biosensors and Bioelectronics, 26, 3371-3375(2011).

    [52] Soh N, Watanabe T, Asano Y et al. Indirect competitive immunoassay for bisphenol A, based on a surface plasmon resonance sensor[J]. Sensors and Materials, 15, 423-438(2003).

    [53] Rather J A, de Wael K. Fullerene-C60 sensor for ultra-high sensitive detection of bisphenol-A and its treatment by green technology[J]. Sensors and Actuators B: Chemical, 176, 110-117(2013).

    [54] Fan H X, Li Y, Wu D et al. Electrochemical bisphenol A sensor based on N-doped graphene sheets[J]. Analytica Chimica Acta, 711, 24-28(2012).

    [55] Santhi V A, Sakai N, Ahmad E D, drinking water et al. 427-[J]. plasma from Malaysia with exposure assessment from consumption of drinking water. Science of the Total Environment, 428, 332-338(2012).

    [56] Zhu Y Y, Cai Y L, Xu L G et al. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A[J]. ACS Applied Materials & Interfaces, 7, 7492-7496(2015).

    [57] Kim S G, Lee J S, Jun J et al. Ultrasensitive bisphenol A field-effect transistor sensor using an aptamer-modified multichannel carbon nanofiber transducer[J]. ACS Applied Materials & Interfaces, 8, 6602-6610(2016).

    [58] Ragavan K V, Selvakumar L S, Thakur M S. Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A[J]. Chemical Communications, 49, 5960-5962(2013).

    [59] Cui H C, Cheng C, Lin X G et al. Rapid and sensitive detection of small biomolecule by capacitive sensing and low field AC electrothermal effect[J]. Sensors and Actuators B: Chemical, 226, 245-253(2016).

    [60] Cheng C, Wang S, Wu J et al. Bisphenol-A sensors on polyimide fabricated by laser direct writing for on-site river water monitoring at attomolar concentration[J]. ACS Applied Materials & Interfaces., 8, 17784-17792(2016).

    Tools

    Get Citation

    Copy Citation Text

    Zhou Weiping, Wang Shutong, Yu Yongchao, Zheng Chong, Li Ruozhou, Hou Tingxiu, Bai Shi, Ma Delong, Feng Guoying, Hu Anming. Research Progress in Fabrication of Embedded Microball Lenses, Energy Devices and Biosensors by Femtosecond Laser Direct Writing[J]. Chinese Journal of Lasers, 2017, 44(1): 102002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Aug. 3, 2016

    Accepted: --

    Published Online: Jan. 10, 2017

    The Author Email: Weiping Zhou (chinaweiping@163.com)

    DOI:10.3788/CJL201744.0102002

    Topics