Laser & Optoelectronics Progress, Volume. 60, Issue 15, 1500007(2023)
Thulium-Doped Fiber Laser and Its Applications in Laser Lithotripsy: Progress and Prospect
[1] Hanna D C, Jauncey I M, Percival R M et al. Continuous-wave oscillation of a monomode thulium-doped fibre laser[J]. Electronics Letters, 24, 1222-1223(1988).
[2] Goodno G D, Book L D, Rothenberg J E. 600-W single-mode single-frequency thulium fiber laser amplifier[J]. Proceedings of SPIE, 7195, 71950Y(2009).
[3] Ehrenreich T, Leveille R, Majid I et al. 1-kW, all-glass Tm: fiber laser[J]. Proceedings of SPIE, 7580, 758016(2010).
[4] Jackson S D, King T A. High-power diode-cladding-pumped Tm-doped silica fiber laser[J]. Optics letters, 23, 1462-1464(1998).
[5] Clarkson W A, Barnes N P, Turner P W et al. High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm[J]. Optics Letters, 27, 1989-1991(2002).
[6] Shen D Y, Sahu J K, Clarkson W A. High-power widely tunable Tm: fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 µm[J]. Optics Express, 14, 6084-6090(2006).
[7] Slobodtchikov E, Moulton P F, EfficientFrith G.. high-power, Tm-doped silica fiber laser[C], MF2(2007).
[8] Moulton P F, Rines G A, Slobodtchikov E V et al. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 85-92(2009).
[9] Hu Z Y, Yan P, Xiao Q R et al. 227-W output all-fiberized Tm-doped fiber laser at 1908 nm[J]. Chinese Physics B, 23, 104206(2014).
[10] Liu J, Shi H, Liu C et al. High-power narrow-linewidth thulium-doped all-fiber MOPA[C], 27A1_3(2015).
[11] Yin K, Zhu R Z, Zhang B et al. 300 W-level, wavelength-widely-tunable, all-fiber integrated thulium-doped fiber laser[J]. Optics Express, 24, 11085-11090(2016).
[12] Liu Y Z, Xing Y B, Liao L et al. 530 W all-fiber continuous-wave Tm-doped fiber laser[J]. Acta Physica Sinica, 69, 184209(2020).
[13] Yang C S, Chen D, Zhao Q L et al. Research progress of 2.0 μm-band Tm-doped continuous wave single-frequency fiber lasers[J]. Chinese Journal of Lasers, 44, 0201006(2017).
[14] McComb T S, Sims R A, Willis C C C et al. High-power widely tunable thulium fiber lasers[J]. Applied Optics, 49, 6236-6242(2010).
[15] Guo C Z, Shen D Y, Long J Y et al. High-power and widely tunable Tm-doped fiber laser at 2 μm[J]. Chinese Optics Letters, 10, 091406(2012).
[16] Chen S X, Jung Y, Alam S U et al. Ultra-wideband operation of a tunable thulium fibre laser offering tunability from 1679—1992 nm[C](2017).
[17] Li Z, Alam S U, Jung Y et al. All-fiber, ultra-wideband tunable laser at 2 μm[J]. Optics Letters, 38, 4739-4742(2013).
[18] Yin K, Zhang B, Xue G et al. High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm[J]. Optics Express, 22, 19947-19952(2014).
[19] Wang X, Jin X X, Zhou P et al. High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier[J]. Optics Express, 23, 3382-3389(2015).
[20] Chen X, Dai D Z, Zhang Y et al. Wavelength-flexible thulium-doped fiber laser based on digital micromirror array[J]. Micromachines, 11, 1036(2020).
[21] Liu F, Liu P, Feng X et al. Tandem-pumped, tunable thulium-doped fiber laser in 2.1 μm wavelength region[J]. Optics Express, 27, 8283-8290(2019).
[22] Hardy L A, Fried N M. Comparison of first-generation (1908 nm) and second-generation (1940 nm) thulium fiber lasers for ablation of kidney stones[J]. Optical Engineering, 58, 096101(2019).
[23] Chollet F, Goedgebuer J P, Porte H et al. Electrooptic narrow linewidth wavelength tuning and intensity modulation of an erbium fiber ring laser[J]. IEEE Photonics Technology Letters, 8, 1009-1011(1996).
[24] Wang F, Shen D Y, Fan D Y et al. Spectral narrowing of cladding-pumped high-power Tm-doped fiber laser using a volume Bragg grating-pair[J]. Applied Physics Express, 3, 112701(2010).
[25] Tao M M, Huang Q J, Yang P L et al. Narrow linewidth CW amplification of a Tm-doped double-clad fiber MOPA system[J]. Optik, 125, 1141-1143(2014).
[26] Liu J, Liu C, Shi H X et al. 342 W narrow-linewidth continuous-wave thulium-doped all-fiber laser[J]. Acta Physica Sinica, 65, 194209(2016).
[27] Bai Y, Yan F P, Feng T et al. Ultra-narrow-linewidth fiber laser in 2 μm band using saturable absorber based on PM-TDF[J]. Chinese Journal of Lasers, 46, 0101003(2019).
[28] Cook J, Roumayah P, Shin D J et al. Narrow linewidth 80 W tunable thulium-doped fiber laser[J]. Optics & Laser Technology, 146, 107568(2022).
[29] Shen D Y, Pearson L, Wang P et al. Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power[J]. Optics Express, 16, 11021-11026(2008).
[30] Yu G Y, Chang J, Wang Q P et al. A theoretical model of thulium-doped silica fiber’s ASE in the 1900 nm waveband[J]. Optoelectronics Letters, 6, 45-47(2010).
[31] Hu Z Y, Yan P, Liu Q et al. High-power single-stage thulium-doped superfluorescent fiber source[J]. Applied Physics B, 118, 101-107(2015).
[32] Khamis M A, Ennser K. Wide broadband ASE source based on thulium-doped fibre for 2 µm wavelength region[C], 141-146(2017).
[33] Aubrecht J, Peterka P, Honzátko P et al. Broadband thulium-doped fiber ASE source[J]. Optics Letters, 45, 2164-2167(2020).
[34] Michalewska Z, Michalewski J, Nawrocki J. Swept-source OCT[J]. Retina Today, 50-56(2013).
[35] Pal D, Sen R, Pal A. Design of all-fiber laser at 1.95 µm for soft tissue surgery[C](2015).
[36] Sypin V, Volkov A, Myasnikov D et al. QCW thulium fiber laser for medical application[C], S1-10(2016).
[37] Pal D, Sen R, Pal A. Design of all‐fiber thulium laser in CW and QCW mode of operation for medical use[J]. Physica Status Solidi C, 14, 1600127(2017).
[38] Pal D, Chowdhury S D, Sen R et al. QCW thulium fiber laser at 1.94 µm for kidney stone fragmentation[C].
[39] Limongelli J R, Allee E, Bieniek M et al. A 564 W QCW thulium fiber oscillator pumped at 793 nm[C], JTu5A.4(2020).
[40] Eichhorn M, Jackson S D. High-pulse-energy actively Q-switched Tm3+-doped silica 2 μm fiber laser pumped at 792 nm[J]. Optics Letters, 32, 2780-2782(2007).
[41] Willis C C C, Shah L, Baudelet M et al. High-energy Q-switched Tm3+-doped polarization maintaining silica fiber laser[J]. Proceedings of SPIE, 7580, 758003(2010).
[42] Stutzki F, Jansen F, Jauregui C et al. 2.4 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality[J]. Optics Letters, 38, 97-99(2013).
[43] Li L, Zhang B, Yin K et al. 1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm[J]. Optics Express, 23, 18098-18105(2015).
[44] Romano C, Jaouën Y, Tench R E et al. kW pulsed nanosecond TDFL with direct modulation[J]. Proceedings of SPIE, 10897, 1089708(2019).
[45] Grzes P, Swiderski J. Gain-switched 2-μm fiber laser system providing kilowatt peak-power mode-locked resembling pulses and its application to supercontinuum generation in fluoride fibers[J]. IEEE Photonics Journal, 10, 1500408(2018).
[46] Liu S L, Dou Z Y, Zhang B et al. High repetition rate gain-switched thulium-doped fiber laser pumped by 1.6 μm noise-like pulses[J]. Optics & Laser Technology, 138, 106856(2021).
[47] Kadwani P, Modsching N, Sims R A et al. Q-switched thulium-doped photonic crystal fiber laser[J]. Optics Letters, 37, 1664-1666(2012).
[48] López-Estopier R, Camarillo-Avilés A, Bello-Jiménez M et al. Q-switched mode locking noise-like pulse generation from a thulium-doped all-fiber laser based on nonlinear polarization rotation[J]. Results in Optics, 5, 100115(2021).
[49] Wang M, Liu M Q, Chen Y W et al. Stable noise-like pulse generation in all-PM mode-locked Tm-doped fiber laser based on NOLM[J]. Chinese Optics Letters, 19, 091402(2021).
[50] Fried N M. Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 µm[J]. Lasers in Surgery and Medicine, 37, 53-58(2005).
[51] Fried N M. High-power laser vaporization of the canine prostate using a 110 W Thulium fiber laser at 1.91 μm[J]. Lasers in Surgery and Medicine, 36, 52-56(2005).
[52] Fried N M, Murray K E. High-power thulium fiber laser ablation of urinary tissues at 1.94 μm[J]. Journal of Endourology, 19, 25-31(2005).
[53] Blackmon R L, Irby P B, Fried N M. Thulium fiber laser lithotripsy using tapered fibers[J]. Lasers in Surgery and Medicine, 42, 45-50(2010).
[54] Blackmon R L, Fried N M, Irby P B. Enhanced thulium fiber laser lithotripsy using micro-pulse train modulation[J]. Journal of Biomedical Optics, 17, 028002(2012).
[55] Traxer O, Keller E X. Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium: YAG laser[J]. World Journal of Urology, 38, 1883-1894(2020).
[56] Corrales M, Traxer O. Initial clinical experience with the new thulium fiber laser: first 50 cases[J]. World Journal of Urology, 39, 3945-3950(2021).
[57] Taratkin M, Azilgareeva C, Korolev D et al. Prospective single-center study of SuperPulsed thulium fiber laser in retrograde intrarenal surgery: initial clinical data[J]. Urologia Internationalis, 106, 404-410(2022).
[58] Enikeev D, Grigoryan V, Fokin I et al. Endoscopic lithotripsy with a SuperPulsed thulium-fiber laser for ureteral stones: a single-center experience[J]. International Journal of Urology, 28, 261-265(2021).
[59] Lin Y, Liu M Q, Ouyang D Q et al. Exploration of thulium-doped fiber lasers in lithotripsy in vitro[J]. Chinese Journal of Lasers, 49, 0101015(2022).
[60] Rice P, Somani B K. A systematic review of thulium fiber laser: applications and advantages of laser technology in the field of urology[J]. Research and Reports in Urology, 13, 519-527(2021).
[61] Kronenberg P, Traxer O. The laser of the future: reality and expectations about the new thulium fiber laser-a systematic review[J]. Translational Andrology and Urology, 8, S398-S417(2019).
[62] Hardy L A, Kennedy J D, Wilson C R et al. Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones[J]. Journal of Biophotonics, 10, 1240-1249(2017).
[63] Hu W G, Li J X. Advances in laser techniques for stone treatment[J]. Journal of Clinical Surgery, 28, 183-185(2020).
[64] Liu M, Gao X F. Advances in fundamental research and clinical application of Thulium fiber laser lithotripsy[J]. Chinese Journal of Urology, 42, 75-78(2021).
[65] Schembri M, Sahu J, Aboumarzouk O et al. Thulium fiber laser: the new kid on the block[J]. Turkish Journal of Urology, 46, S1-S10(2020).
[66] Zhang H, Xiao L, Zou H et al. Application of SpyGlass direct visualization system in diagnosis and treatment of biliary diseases[J]. China Journal of Endoscopy, 25, 1-5(2019).
[67] Sun M, Wang H G, Wang M T et al. Application of SpyGlass DS choledochoscope in intrahepatic bile duct stones[J]. China Journal of Endoscopy, 27, 78-83(2021).
[68] Xu W, Miao L, Wang Z F et al. Application of SpyGlassTM DS direct visualization system in the diagnosis and treatment of biliary tract diseases[J]. Journal of Clinical Hepatology, 36, 2626-2629(2020).
[69] Zou Y Y, Guo Y D, Gu H X et al. Application of SpyGlass in biliary and pancreatic diseases[J]. Modern Digestion & Intervention, 25, 812-815(2020).
[70] Mizrahi M, Khoury T, Wang Y et al. “Apple Far from the Tree”: comparative effectiveness of fiberoptic single-operator cholangiopancreatoscopy (FSOCP) and digital SOCP (DSOCP)[J]. HPB, 20, 285-288(2018).
[71] Pal D, Paul A, Shekhar N K et al. COM stone dusting and soft tissue ablation with Q-switched thulium fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 7100808(2019).
Get Citation
Copy Citation Text
Yousi Yang, Dan Li, Encai Ji, Xiaofeng Ji, Bing Tian, Ping Yan, Mali Gong, Qirong Xiao. Thulium-Doped Fiber Laser and Its Applications in Laser Lithotripsy: Progress and Prospect[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1500007
Category: Reviews
Received: Jun. 10, 2022
Accepted: Jul. 5, 2022
Published Online: Aug. 18, 2023
The Author Email: Dan Li (dli@mail.tsinghua.edu.cn), Encai Ji (jec12@tsinghua.org.cn), Xiaofeng Ji (54jixiaofeng@163.com)