Acta Optica Sinica, Volume. 44, Issue 7, 0722001(2024)

Opto-Mechanical Thermal Integration Analysis and Optimization of KrF Deep Ultraviolet Lithography Projection Lens

Xing Han1,3, Lun Jiang1,2、*, Yanwei Li3、**, and Junchi Li3
Author Affiliations
  • 1School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • 2National and Local Joint Engineering Research Center of Space Photoelectric Technology, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • 3Ji Hua Laboratory, Foshan 528200, Guangdong , China
  • show less
    Figures & Tables(20)
    Optical system schematic diagram
    Analysis, design and optimization of opto-mechanical thermal integration for deep ultraviolet lithography projection lens
    Schematic diagram of component 17 support structure
    Assembly drawing of mechanical support structure
    Cross-sectional view of lithography projection lens after overall assembly
    Material property relationship between optical component, adhesive layer, and support structure
    Correction method based on vector height displacement
    Simplified finite element model of whole structure
    Surface deformation cloud image of component 17 when working at 20 ℃. (a) Surface 1 deformation cloud image; (b) surface 2 deformation cloud image
    PV and RMS values of each surface of optical element under thermal-mechanical coupling condition
    Sensitivity analysis of individual optical element
    Sensitivity analysis of individual optical element
    Wavefront aberration RMS diagram. (a) RMS wavefront aberration in different fields of view; (b) relationship between wavefront aberration and field of view
    Sampled field Fringe Zernike polynomial coefficient
    Calibrate F-tan θ distortion
    • Table 1. Material properties

      View table

      Table 1. Material properties

      MaterialDensity /(g/cm3Young modulus /GPaPoisson's ratioCoefficient of thermalexpansion /(℃-1Thermal conductivity /(W · m-1 · ℃-1
      Fused quartz2.20172.70.160.52×10-61.38
      Aluminium alloy 70752.810720.2523.50×10-610
      Invar steel 4J3328.1001410.301.00×10-613.9
      60Si2Mn7.8502060.2811.50×10-625.53
      2216B/A gray 3M1.3000.6890.43102.00×10-60.395
    • Table 2. Fringe Zernike polynomials and Seidel aberrations

      View table

      Table 2. Fringe Zernike polynomials and Seidel aberrations

      No.nmZernike polynomialSeidel aberration
      1001Piston
      211ρcos φTilt-X
      311ρsin φTilt-Y
      4202ρ2-1Focus
      522ρ2cos2φAstigmatism 0° or 90°
      622ρ2sin2φAstigmatism ±45°
      7313ρ3-2ρcos φX coma
      8313ρ3-2ρsin φY coma
      9406ρ4-6ρ2+1Spherical and focus
    • Table 3. Fringe Zernike polynomial coefficients under +2 ℃ temperature change limit

      View table

      Table 3. Fringe Zernike polynomial coefficients under +2 ℃ temperature change limit

      No.Optical element 1Optical element 2Optical element 3
      Surface 1 /mmSurface 2 /mmSurface 1 /mmSurface 2 /mmSurface 1 /mmSurface 2 /nm
      1-2.427067×10-91.424381×10-9-2.584727×10-101.868567×10-9-9.524387×10-9-1.170215×10-8
      2-2.483539×10-10-1.572861×10-11-1.621862×10-114.844941×10-11-1.527468×10-9-1.680896×10-9
      3-7.381892×10-11-1.665980×10-132.340171×10-111.358655×10-10-2.620776×10-10-2.798929×10-10
      47.337144×10-67.475565×10-62.221321×10-65.756336×10-68.358752×10-69.106803×10-5
      5-3.716965×10-8-7.785167×10-8-2.628440×10-9-4.784296×10-98.219012×10-91.060361×10-8
      68.205159×10-91.587273×10-8-1.919281×10-8-1.143515×10-8-1.069341×10-8-1.452380×10-8
      76.711797×10-93.852177×10-9-3.101850×10-9-1.853834×10-9-2.088006×10-9-1.917838×10-9
      87.415819×10-95.649610×10-97.077392×10-101.723248×10-10-3.253933×10-9-4.701978×10-9
      92.404682×10-6-2.506335×10-74.120477×10-7-1.878787×10-6-5.594270×10-6-4.678698×10-6
    • Table 4. Image quality of optical system under condition of opto-mechanical thermal integration analysis

      View table

      Table 4. Image quality of optical system under condition of opto-mechanical thermal integration analysis

      ParameterWave aberration RMS /λDistortion /nm
      0 fieldof view0.3 fieldof view0.5 fieldof view0.707 fieldof view0.8 fieldof view1.0 fieldof view

      Opto-mechanical thermal integration

      analysis image quality

      0.06690.06690.06710.07510.07960.071225.61
    • Table 5. Comparison of image quality of optical system before and after opto-mechanical thermal integration analysis

      View table

      Table 5. Comparison of image quality of optical system before and after opto-mechanical thermal integration analysis

      ParameterWave aberration RMS /λDistortion /nm
      0 fieldof view0.3 fieldof view0.5 fieldof view

      0.707 field

      of view

      0.8 field

      of view

      1.0 fieldof view
      Ideal image quality0.00730.03120.03590.03330.03250.0391<6.00
      Opto-mechanical thermal integrationanalysis image quality (pre-optimization)0.06690.06690.06710.07510.07960.071225.61
      Opto-mechanical thermal integrationanalysis image quality (post-optimization)0.01970.03050.03160.03280.03520.04225.71
    Tools

    Get Citation

    Copy Citation Text

    Xing Han, Lun Jiang, Yanwei Li, Junchi Li. Opto-Mechanical Thermal Integration Analysis and Optimization of KrF Deep Ultraviolet Lithography Projection Lens[J]. Acta Optica Sinica, 2024, 44(7): 0722001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Dec. 6, 2023

    Accepted: Jan. 5, 2024

    Published Online: Apr. 11, 2024

    The Author Email: Jiang Lun (jlciomp@163.com), Li Yanwei (yanwei201314@163.com)

    DOI:10.3788/AOS231895

    Topics