Chinese Optics, Volume. 15, Issue 4, 609(2022)

Research progress of optical fiber Fabry-Perot interferometer high temperature sensors

Ai-wu LI1, Tian-qi SHAN1, Qi GUO1, Xue-peng PAN1, Shan-ren LIU1, Chao CHEN2, and Yong-sen YU1、*
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • 2State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • show less
    References(88)

    [1] WANG J Y, SONG Y S, TONG SH F, . Linkage tracking control technology of space laser communication network mirror[J]. Chinese Optics, 13, 537-546(2020).

    [2] LIU Y, LIU Y, XIAO H D, . 638 nm narrow linewidth diode laser with a grating external cavity[J]. Chinese Optics, 13, 1249-1256(2020).

    [3] PANG F F, MA ZH W, Liu H H, . Research progress of sapphire-derived fibers and sensors[J]. Journal of Applied Sciences, 36, 59-74(2018).

    [4] DENG J, WANG D N. Construction of cascaded Fabry–Perot interferometers by four in-fiber mirrors for high-temperature sensing[J]. Optics Letters, 44, 1289-1292(2019).

    [5] LI W W, LIANG T, JIA P G, et al. Fiber-optic Fabry–Perot pressure sensor based on sapphire direct bonding for high-temperature applications[J]. Applied Optics, 58, 1662-1666(2019).

    [6] MA W Y, JIANG Y, GAO H CH. Miniature all-fiber extrinsic Fabry–Pérot interferometric sensor for high-pressure sensing under high-temperature conditions[J]. Measurement Science and Technology, 30, 025104(2019).

    [7] JING SH M, ZHANG X Y, LIANG J F, . Ultrashort fiber Bragg grating written by femtosecond laser and its sensing characteristics[J]. Chinese Optics, 10, 449-454(2017).

    [8] LIANG J F, JING SH M, MENG A H, . Integrated optical sensor based on a FBG in parallel with a LPG[J]. Chinese Optics, 9, 329-334(2016).

    [9] MING X Y, GUO Q, XUE ZH K, . A femtosecond laser-inscribed fine-core long-period grating with low temperature sensitivity[J]. Chinese Optics, 13, 737-744(2020).

    [10] WANG Z, CHEN J, WEI H, et al. Sapphire Fabry-Perot interferometer for high-temperature pressure sensing[J]. Applied Optics, 59, 5189-5196(2020).

    [11] YANG SH, FENG Z A, JIA X T, et al. All-sapphire miniature optical fiber tip sensor for high temperature measurement[J]. Journal of Lightwave Technology, 38, 1988-1997(2020).

    [12] YU X, WANG SH, JIANG J F, et al. Self-filtering high-resolution dual-sapphire-fiber-based high-temperature sensor[J]. Journal of Lightwave Technology, 37, 1408-1414(2019).

    [13] ZHANG X Y, YU Y S, ZHU C C, et al. Miniature end-capped fiber sensor for refractive index and temperature measurement[J]. IEEE Photonics Technology Letters, 26, 7-10(2014).

    [14] CUI X L, ZHANG H, WANG D N. Parallel structured optical fiber in-line Fabry-Perot interferometers for high temperature sensing[J]. Optics Letters, 45, 726-729(2020).

    [15] GAO H CH, JIANG Y, CUI Y, et al. Dual-cavity fabry–perot interferometric sensors for the simultaneous measurement of high temperature and high pressure[J]. IEEE Sensors Journal, 18, 10028-10033(2018).

    [16] DONG B, WEI L, ZHOU D P. Miniature high-sensitivity high-temperature fiber sensor with a dispersion compensation fiber-based interferometer[J]. Applied Optics, 48, 6466-6469(2009).

    [17] ZHU T, KE T, RAO Y J, et al. Fabry–Perot optical fiber tip sensor for high temperature measurement[J]. Optics Communications, 283, 3683-3685(2010).

    [18] WANG J J, LALLY E M, DONG B, et al. Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip[J]. IEEE Sensors Journal, 11, 3406-3408(2011).

    [19] XU L C, DENG M, DUAN D W, et al. High-temperature measurement by using a PCF-based Fabry-Perot interferometer[J]. Optics and Lasers in Engineering, 50, 1391-1396(2012).

    [20] TAN X L, GENG Y F, LI X J, et al. High temperature microstructured fiber sensor based on a partial-reflection-enabled intrinsic Fabry-Perot interferometer[J]. Applied Optics, 52, 8195-8198(2013).

    [21] DU Y Y, QIAO X G, RONG Q ZH, et al. A miniature Fabry-Pérot interferometer for high temperature measurement using a double-core photonic crystal fiber[J]. IEEE Sensors Journal, 14, 1069-1073(2014).

    [22] LEE D, TIAN ZH P, DAI J X, et al. Sapphire fiber high-temperature tip sensor with multilayer coating[J]. IEEE Photonics Technology Letters, 27, 741-743(2015).

    [23] DING W H, JIANG Y, GAO R, et al. High-temperature fiber-optic Fabry-Perot interferometric sensors[J]. Review of Scientific Instruments, 86, 055001(2015).

    [24] CHEN ZH SH, XIONG S S, GAO SH CH, et al. High-temperature sensor based on fabry-perot interferometer in microfiber tip[J]. Sensors, 18, 202(2018).

    [25] CHEN P CH, SHU X W. Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing[J]. Optics Express, 26, 5292-5299(2018).

    [26] ZHANG P H, ZHANG L, MOURELATOS Z P, et al. Crystallization-sapphire-derived-fiber-based Fabry-Perot interferometer for refractive index and high-temperature measurement[J]. Applied Optics, 57, 9016-9021(2018).

    [27] YU H H, WANG Y, MA J, et al. Fabry-Perot interferometric high-temperature sensing up to 1200 °C based on a silica glass photonic crystal fiber[J]. Sensors, 18, 273(2018).

    [28] DENG J, WANG D N, ZHANG H. Femtosecond laser inscribed multiple in-fiber reflection mirrors for high-temperature sensing[J]. Journal of Lightwave Technology, 37, 5537-5541(2019).

    [29] WANG Q H, ZHANG H, WANG D N. Cascaded multiple Fabry-Perot interferometers fabricated in no-core fiber with a waveguide for high-temperature sensing[J]. Optics Letters, 44, 5145-5148(2019).

    [30] [30] LEI X Q, DONG X P, Sensitivityenhanced fiber interferometric high temperature sens based on vernier effect[J]. Proceedings of SPIE, 2019, 11144: 1114405

    [31] LIU H, PANG F, HONG L, et al. Crystallization-induced refractive index modulation on sapphire-derived fiber for ultrahigh temperature sensing[J]. Optics Express, 27, 6201-6209(2019).

    [32] WANG Z, LIU H, MA Z, et al. High temperature strain sensing with alumina ceramic derived fiber based Fabry-Perot interferometer[J]. Optics Express, 27, 27691-27701(2019).

    [33] ZHANG G, WU X Q, LI SH L, et al. Miniaturized Fabry-Perot probe utilizing PMPCF for high temperature measurement[J]. Applied Optics, 59, 873-877(2020).

    [34] WANG B T, NIU Y X, ZHENG SH W, et al. A high temperature sensor based on sapphire fiber Fabry-Perot interferometer[J]. IEEE Photonics Technology Letters, 32, 89-92(2020).

    [35] LEI J CH, ZHANG Q, SONG Y, et al. Laser-assisted embedding of all-glass optical fiber sensors into bulk ceramics for high-temperature applications[J]. Optics & Laser Technology, 128, 106223(2020).

    [36] SU H Y, ZHANG Y D, MA K, et al. Tip packaged high-temperature miniature sensor based on suspended core optical fiber[J]. Journal of Lightwave Technology, 38, 4160-4165(2020).

    [37] LEI X Q, DONG X P. High-sensitivity Fabry–Perot interferometer high-temperature fiber sensor based on vernier effect[J]. IEEE Sensors Journal, 20, 5292-5297(2020).

    [38] WANG M H, YANG Y, HUANG S, et al. Multiplexable high-temperature stable and low-loss intrinsic Fabry-Perot in-fiber sensors through nanograting engineering[J]. Optics Express, 28, 20225-20235(2020).

    [39] NIU Y D, WANG D N, WANG Q H, et al. Cascaded multiple Fabry–Perot interferometers fabricated in multimode fiber with a waveguide[J]. Optical Fiber Technology, 58, 102306(2020).

    [40] ZHU Y ZH, HUANG ZH Y, SHEN F B, et al. Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements[J]. Optics Letters, 30, 711-713(2005).

    [41] KOU J L, FENG J, YE L, et al. Miniaturized fiber taper reflective interferometer for high temperature measurement[J]. Optics Express, 18, 14245-14250(2010).

    [42] TAFULO P A R, JORGE P A S, SANTOS J L, et al. Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement[J]. Optics Communications, 285, 1159-1162(2012).

    [43] ZHANG Y N, YUAN L, LAN X W, et al. High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser[J]. Optics Letters, 38, 4609-4612(2013).

    [44] KAUR A, WATKINS S E, HUANG J, et al. Microcavity strain sensor for high temperature applications[J]. Optical Engineering, 53, 017105(2014).

    [45] JIANG Y J, YANG D X, YUAN Y, et al. Strain and high-temperature discrimination using a type II fiber Bragg grating and a miniature fiber Fabry-Perot interferometer[J]. Applied Optics, 55, 6341-6345(2016).

    [46] WANG Y C, BAO H H, RAN Z L, et al. Integrated FP/RFBG sensor with a micro-channel for dual-parameter measurement under high temperature[J]. Applied Optics, 56, 4250-4254(2017).

    [47] LIU SH H, TIAN J, WANG SH, et al. Anti-resonant reflecting guidance in silica tube for high temperature sensing[J]. IEEE Photonics Technology Letters, 29, 2135-2138(2017).

    [48] LIU ZH W, QIAO X G, WANG R H. Miniaturized fiber-taper-based Fabry-Perot interferometer for high-temperature sensing[J]. Applied Optics, 56, 256-259(2017).

    [49] JIA P G, FANG G CH, LIANG T, et al. Temperature-compensated fiber-optic Fabry–Perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application[J]. Sensors and Actuators B:Chemical, 244, 226-232(2017).

    [50] LI Z, JIA P G, FANG G CH, et al. Microbubble-based fiber-optic Fabry-Perot pressure sensor for high-temperature application[J]. Applied Optics, 57, 1738-1743(2018).

    [51] LIANG H, JIA P G, LIU J, et al. Diaphragm-free Fiber-Optic fabry-perot interferometric gas pressure sensor for high temperature application[J]. Sensors, 18, 1011(2018).

    [52] ZHAO L, ZHANG Y D, CHEN Y H, et al. Composite cavity fiber tip Fabry-Perot interferometer for high temperature sensing[J]. Optical Fiber Technology, 50, 31-35(2019).

    [53] ZHU CH, ZHUANG Y Y, ZHANG B H, et al. A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity[J]. IEEE Photonics Technology Letters, 31, 35-38(2019).

    [54] ZHANG Q, LEI J CH, CHEN Y ZH, et al. 3D printing of all-glass fiber-optic pressure sensor for high temperature applications[J]. IEEE Sensors Journal, 19, 11242-11246(2019).

    [55] ZHANG P H, ZHANG L, WANG ZH Y, et al. Sapphire derived fiber based Fabry-Perot interferometer with an etched micro air cavity for strain measurement at high temperatures[J]. Optics Express, 27, 27112-27123(2019).

    [56] ZHANG F ZH, ZHAO N, LIN Q J, et al. The influence of key characteristic parameters on performance of optical fiber Fabry-Perot temperature sensor[J]. AIP Advances, 10, 085118(2020).

    [57] NAN J, ZHANG D SH, WEN X Y, et al. Elimination of thermal strain interference in mechanical strain measurement at high temperature using an EFPI-RFBG hybrid sensor with unlimited cavity length[J]. IEEE Sensors Journal, 20, 5270-5276(2020).

    [58] TIAN Q, XIN G G, LIM K S, et al. Cascaded Fabry-Perot interferometer-regenerated fiber Bragg grating structure for temperature-strain measurement under extreme temperature conditions[J]. Optics Express, 28, 30478-30488(2020).

    [59] LYU D J, PENG J K, HUANG Q, et al. Radiation-resistant optical fiber Fabry-Perot interferometer used for high-temperature sensing[J]. IEEE Sensors Journal, 21, 57-61(2021).

    [60] RAO Y J, DENG M, ZHU T, et al. In-line Fabry–Perot etalons based on hollow-corephotonic bandgap fibers for high-temperature applications[J]. Journal of Lightwave Technology, 27, 4360-4365(2009).

    [61] DENG M, TANG CH P, ZHU T, et al. PCF-based Fabry–Pérot interferometric sensor for strain measurement at high temperatures[J]. IEEE Photonics Technology Letters, 23, 700-702(2011).

    [62] WU CH, FU H Y, QURESHI K K, et al. High-pressure and high-temperature characteristics of a Fabry–Perot interferometer based on photonic crystal fiber[J]. Optics Letters, 36, 412-414(2011).

    [63] RAN Z L, LIU SH, LIU Q, et al. Novel high-temperature fiber-optic pressure sensor based on etched PCF F-P interferometer micromachined by a 157-nm laser[J]. IEEE Sensors Journal, 15, 3955-3958(2015).

    [64] ZHANG P, TANG M, GAO F, et al. Simplified hollow-core fiber-based Fabry–Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement[J]. IEEE Photonics Journal, 7, 7100210(2015).

    [65] FERREIRA M S, RORIZ P, BIERLICH J, et al. Fabry-Perot cavity based on silica tube for strain sensing at high temperatures[J]. Optics Express, 23, 16063-16070(2015).

    [66] LIU H, YANG H ZH, QIAO X G, et al. Strain measurement at high temperature environment based on Fabry-Perot interferometer cascaded fiber regeneration grating[J]. Sensors and Actuators A:Physical, 248, 199-205(2016).

    [67] ZHANG ZH, HE J, DU B, et al. Measurement of high pressure and high temperature using a dual-cavity Fabry-Perot interferometer created in cascade hollow-core fibers[J]. Optics Letters, 43, 6009-6012(2018).

    [68] LIU D J, WU Q, MEI CH, et al. Hollow core fiber based interferometer for high-temperature (1000 °C) measurement[J]. Journal of Lightwave Technology, 36, 1583-1590(2018).

    [69] HE H Y, LIU Y, LIAO Y Y, et al. Simple fiber-optic sensor for simultaneous and sensitive measurement of high pressure and high temperature based on the silica capillary tube[J]. Optics Express, 27, 25777-25788(2019).

    [70] ZHANG G, WU X Q, ZHANG W J, et al. High temperature Vernier probe utilizing photonic crystal fiber-based Fabry-Perot interferometers[J]. Optics Express, 27, 37308-37317(2019).

    [71] TIAN Q, YANG H ZH, LIM K S, et al. Temperature and strain response of in-fiber air-cavity Fabry-Perot interferometer under extreme temperature condition[J]. Optik, 220, 165034(2020).

    [72] ZHANG H, WANG D N, RAHMAN B M A. Parallel structured fiber in-line multiple Fabry-Perot cavities for high temperature sensing[J]. Sensors and Actuators A:Physical, 313, 112214(2020).

    [73] CUI Y, JIANG Y, LIU T M, et al. A dual-cavity Fabry–Perot interferometric fiber-optic sensor for the simultaneous measurement of high-temperature and high-gas-pressure[J]. IEEE Access, 8, 80582-80587(2020).

    [74] YI J, LALLY E, WANG A B, et al. Demonstration of an all-sapphire Fabry–Pérot cavity for pressure sensing[J]. IEEE Photonics Technology Letters, 23, 9-11(2010).

    [75] TIAN ZH P, YU ZH H, LIU B, et al. Sourceless optical fiber high temperature sensor[J]. Optics Letters, 41, 195-198(2016).

    [76] DRAGIC P, HAWKINS T, FOY P, et al. Sapphire-derived all-glass optical fibres[J]. Nature Photonics, 6, 627-633(2012).

    [77] LI Z L, LIAO CH R, LIU SH, . Research progress of in-fiber Fabry-Perot interferometric temperature and pressure sensors[J]. Acta Physica Sinica, 66, 070708(2017).

    [78] CHEN W M, LEI X H, ZHANG W, . Recent progress of optical fiber Fabry-Perot sensors[J]. Acta Optica Sinica, 38, 132-145(2018).

    [79] ZHU Y, FU Y M, CHEN W M, . A health monitoring system for the Dafosi Yangtze River bridge[J]. China Civil Engineering Journal, 38, 66-71(2005).

    [80] LIANG D K, LI D SH, PAN X W, . Study of fiber-optic smart layer system based on Fabry-Perot strain sensor[J]. Chinese Journal of Scientific Instrument, 26, 226-228(2005).

    [81] SHAN N, SHI Y K, LIU X. Detecting crack of aircraft engine blade based on optical fiber F-P sensor[J]. Nondestructive Testing, 31, 206-207,216(2009).

    [82] [82] FUSIEK G, NIEWCZAS P, BURT G M. Preliminary evaluation of a highpressure hightemperature downhole optical sens[C]. Proceedings of the SENSS, 2011 IEEE, IEEE, 2011: 409412.

    [83] YANG T T, HE X, RAN Z L, et al. Highly integrated all-fiber FP/FBG sensor for accurate measurement of strain under high temperature[J]. Materials, 11, 1867(2018).

    [84] ZHOU CH R, TONG X L, MAO Y, et al. Study on a high-temperature optical fiber F–P acceleration sensing system based on MEMS[J]. Optics and Lasers in Engineering, 120, 95-100(2019).

    [85] MA W Y, JIANG Y, ZHANG H, et al. Miniature on-fiber extrinsic Fabry-Perot interferometric vibration sensors based on micro-cantilever beam[J]. Nanotechnology Reviews, 8, 293-298(2019).

    [86] HUANG Y G, TANG F, MA D W, et al. Design, fabrication, characterization, and application of an ultra-high temperature 6H-SiC sapphire fiber optic vibration sensor[J]. IEEE Photonics Journal, 11, 6802512(2019).

    [87] FENG R, CHU Y, LIU ZH J, et al. Study on high temperature resistant packaging of ultra high temperature Fabry–Perot optical fibre vibration sensor[J]. IEEE Sensors Journal, 21, 27045-27050(2021).

    [88] [88] LIANG H L. Design experiment of allfiber lowfrequency vibration sens based on FPI[D]. Chongqing: Chongqing University, 2017.

    CLP Journals

    [1] Xiao-kun WANG, Zhou LI, Guo-long LIANG. Tunable narrow-band perfect absorber based on metal-dielectric-metal[J]. Chinese Optics, 2024, 17(2): 263

    [2] Yu-wei FU, Rui-nan WANG, Wen-ting TANG, Xi-zhao DU, Wei WANG, Hai-bin CHEN. MEMS silicon-glass fiber-optic FP pressure sensor for high-pressure measurements[J]. Chinese Optics, 2024, 17(4): 771

    [3] Ye-yu ZHANG, Ting LIU, Jian-wei HUANG, Xue-zhi HUANG, Ming-jie CHEN. Capillary liquid-core optical fiber temperature sensor based on fluorescence intensity ratio[J]. Chinese Optics, 2024, 17(3): 528

    [4] Zhen-rui ZHOU, Guo-qiang ZHANG, Zong-jia QIU, Shao-peng GUO, Qun LI, Jian SHAO, Peng WU, Yun-cai LU. An improved phase generated carrier demodulation algorithm of fiber optic fabry-perot sensor[J]. Chinese Optics, 2024, 17(2): 312

    [5] Xiao-xiao FENG, Ming-yu HAN, Mei-peng CHEN, Qian FANG, Yong-jin WANG, Xin LI. Integrated Nitride optoelectronic chip for motion detection and visible light communication[J]. Chinese Optics, 2023, 16(5): 1257

    Tools

    Get Citation

    Copy Citation Text

    Ai-wu LI, Tian-qi SHAN, Qi GUO, Xue-peng PAN, Shan-ren LIU, Chao CHEN, Yong-sen YU. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review

    Received: Dec. 13, 2021

    Accepted: Mar. 23, 2022

    Published Online: Sep. 6, 2022

    The Author Email:

    DOI:10.37188/CO.2021-0219

    Topics