Chinese Optics, Volume. 15, Issue 4, 609(2022)

Research progress of optical fiber Fabry-Perot interferometer high temperature sensors

Ai-wu LI1, Tian-qi SHAN1, Qi GUO1, Xue-peng PAN1, Shan-ren LIU1, Chao CHEN2, and Yong-sen YU1、*
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • 2State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • show less
    Figures & Tables(13)
    Schematic diagram of multi-beam interference
    Structure diagrams of a typical (a) IFPI, (b) EFPI and (c) ILFPI
    (a) Sourceless EFPI high temperature sensor based on sapphire fiber and sapphire wafer[75]; (b) self-filtering EFPI high temperature sensor fabricated by double sapphire fiber and sapphire wafer[12]
    (a) FPI high temperature sensor based on sapphire fiber and sapphire wafer[34]; (b) EFPI high temperature sensor fabricated by direct bonding of three-layer sapphire wafers[10]
    (a) ILFPI sensor fabricated by fusion of SMF and HCF[68]; (b) hybrid fiber-optic sensor fabricated by cascade of FBG and FPI[83]; (c) fiber-optic FPI sensor fabricated by CDF[32]
    (a) FPI sensor fabricated by inserting FBG and HST into quartz sleeve[51]; (b) FPI sensor fabricated by direct bonding of sapphire wafer[5]; (c) SMF grooved by femtosecond laser, then FPI fabricated by polishing and welding[6]
    Schematic diagram of optical fiber FPI high temperature acceleration sensors[84]
    Schematic diagram of FPI high temperature vibration sensors based on micro-cantilever beam[85]
    Schematic diagram of 6H-SiC sapphire fiber vibration sensor[86]
    • Table 1. Comparison of parameters of various IFPIs

      View table
      View in Article

      Table 1. Comparison of parameters of various IFPIs

      IFPI温度测量范围温度灵敏度应变/压力测量范围应变/压力灵敏度
      注:表中在灵敏度后标注的OPD(Optical Path Difference)为光程差,是通过测量FPI的腔长变化来对外界环境参数进行传感。未进行标注的则是通过测量反射峰的漂移来对外界环境参数进行传感。
      2009[16]25~600 °C68.6 pm/°C
      2010[17]23~1200 °C17.5 nm/°C(OPD)
      2011[18]200~1000 °C1.75×10−5 °C
      2012[19]25~1100 °C39.1 nm/°C(OPD)
      2013[20]24~1000 °C17.7 pm/°C
      2014[21]30~900 °C13.9 pm/°C
      2015[22]400~1000 °C40.7 pm/°C(OPD)
      2015[23]17~1200 °C10 pm/°C
      2018[24]25~1000 °C13.6 pm/°C
      2018[25]500~1000 °C18.6 pm/°C
      2018[26]20~1000 °C13.57 pm/°C
      2018[27]300~1200 °C15.61 pm/°C
      2019[28]100~1100 °C16.92 pm/°C
      2019[4]400~1100 °C15.88 pm/°C
      2019[29]400~1100 °C16.36 pm/°C0~2000 με1.06 pm/με
      2019[30]300~1200 °C15.68 pm/°C
      2019[31]0~1600 °C13.2 pm/°C(1200 °C)
      2019[32]32~1200 °C15.6 pm/°C0~3000 µε1.5 pm/µε(900 °C)
      2020[33]100~1000 °C15.34 pm/°C
      2020[14]15~1000 °C15.4 pm/°C0~2800 με1.04 pm/με
      2020[34]25~1550 °C32.5 pm/°C(1550 °C)
      2020[35]20~800 °C24.52 pm/°C
      2020[36]50~800 °C12.51 pm/°C(800 °C)
      2020[37]200~1200 °C15.42 pm/°C
      2020[38]23~1000 °C17.15 nm/°C(OPD)
      2020[39]400~1000 °C17.1 pm/°C
    • Table 2. Comparison of parameters of various EFPIs

      View table
      View in Article

      Table 2. Comparison of parameters of various EFPIs

      EFPI温度测量范围温度灵敏度应变/压力测量范围应变/压力灵敏度
      2005[40]230~1600 °C2.798 nm/°C
      2010[41]20~1050 °C20 pm/°C(OPD)
      2012[42]100~700 °C0.98 pm/°C0~800 με3.14 pm/με
      2013[43]20~700 °C4.44 pm/°C0~689.5 kPa0.28 pm/Pa
      2014[44]20~800 °C0.59 pm/°C0~3700 με1.5 pm/με
      2016[45]23~600 °C12.3 pm/°C0~2104 με1.74 pm/με
      2017[46]23~600 °C0.51 pm/°C0~3 MPa1.53 nm/MPa(600 °C)
      2017[47]23~1000 °C20.31 pm/°C
      2017[48]19~1000 °C14.68 pm/°C
      2017[49]20~900 °C0.044 pm/°C0.1~0.7 MPa1.14 nm/MPa(800 °C)
      2018[50]20~600 °C0.17 pm/°C0~1.0 MPa−5.912 nm/MPa(600 °C)
      2018[51]20~800 °C14.8 pm/°C0.1~0.7 MPa4.28 nm/MPa
      2018[15]20~800 °C19.8 nm/°C(OPD)0~10 MPa98 nm/MPa
      2019[12]100~1080 °C4.786 nm/°C(OPD)
      2019[52]100~800 °C14.31 pm/°C
      2019[53]20~1000 °C12.26 nm/°C
      2019[6]20~1000 °C108.11 pm/°C(OPD)0~10 MPa70.85 nm/MPa
      2019[5]20~800 °C1.25 nm/°C(OPD)20~700 kPa2.768 μm/MPa(OPD)
      2019[54]20~700 °C0.215 nm/°C0~500 kPa5.22 nm/MPa
      2019[55]20~1000 °C15.41 pm/°C0~1000 µε1.19 pm/µε(900 °C)
      2020[56]25~1000 °C0.77 pm/°C
      2020[10]-50~1200 °C23 pm/°C0.4~4.0 MPa1.2 nm/MPa(1200 °C)
      2020[11]23~1455 °C1.32 nm/°C(OPD)
      2020[57]100~800 °C10.74 pm/°C0~900 µε21.46 μm/µε(800 °C)
      2020[58]100~1000 °C18.01 pm/°C0~450 µε2.17 pm/µε(800 °C)
      2021[59]200~800 °C29.9 pm/°C
    • Table 3. Comparison of parameters of various ILFPIs

      View table
      View in Article

      Table 3. Comparison of parameters of various ILFPIs

      ILFPI温度测量范围温度灵敏度应变/压力测量范围应变/压力灵敏度
      2009[60]100~600 °C1.4 nm/°C0~400 με5.95 nm/µε
      2011[61]50~750 °C0.6 pm/°C0~950 με2.3 pm/με
      2011[62]25~700 °C13.7 pm/°C0~40 MPa−5.8 pm/MPa
      2015[63]0~700 °C0.45 pm/°C0~10 MPa54.7 pm/MPa
      2015[64]250~1050 °C1.019 nm/°C(1050 °C)
      2015[65]23~900 °C0.85 pm/°C0~1000 με13.9 pm/με
      2016[66]17~900 °C13.97 pm/°C0~600 με1.23 pm/με
      2018[67]100~800 °C17 nm/°C(OPD)0~10 MPa1.336 μm/MPa
      2018[68]0~1005 °C33.4 pm/°C0~1400 με0.46 pm/με
      2019[69]20~900 °C0.82 pm/°C0.3~2.7 MPa4.24 nm/MPa
      2019[70]24~1000 °C535.16 pm/°C
      2020[71]20~1000 °C0.64 pm/°C0~1000 με1.23 pm/με
      2020[72]100~1100 °C16.91 pm/°C0~2400 με1 pm/με
      2020[73]40~1000 °C25.3 nm/°C0~10 MPa356.5 nm/MPa(1000 °C)
    • Table 4. Comparison of cross-sensitivity of FPI high temperature strain/pressure sensors

      View table
      View in Article

      Table 4. Comparison of cross-sensitivity of FPI high temperature strain/pressure sensors

      FPI温度灵敏度应变/压力灵敏度交叉灵敏度
      2011[61]0.6 pm/°C2.3 pm/με4 με/ °C
      2013[43]4.44 pm/°C0.28 pm/Pa15.86 Pa/ °C
      2015[65]0.85 pm/°C13.9 pm/με0.18 με/ °C
      2018[15]19.8 nm/°C(OPD)98 nm/MPa1490 Pa/ °C
      2018[67]17 nm/°C1.336 μm/MPa−15 Pa/ °C,0.3 °C/MPa
      2019[6]108.11 pm/°C(OPD)70.85 nm/MPa1525 Pa/ °C
      2019[55]0.215 nm/°C5.22 nm/MPa67.6 Pa/ °C
      2019[69]0.82 pm/°C4.24 nm/MPa192 Pa/ °C
      2020[10]23 pm/°C1.2 nm/MPa2×104 Pa/ °C
    Tools

    Get Citation

    Copy Citation Text

    Ai-wu LI, Tian-qi SHAN, Qi GUO, Xue-peng PAN, Shan-ren LIU, Chao CHEN, Yong-sen YU. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review

    Received: Dec. 13, 2021

    Accepted: Mar. 23, 2022

    Published Online: Sep. 6, 2022

    The Author Email:

    DOI:10.37188/CO.2021-0219

    Topics