Acta Optica Sinica, Volume. 45, Issue 17, 1720008(2025)
Research Progress of Heterogeneous Integrated Photonic Technology for Multi-Material Systems (Invited)
Fig. 1. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics[22]
Fig. 2. Progress of silicon nitride based photonic integration, with emphasis on demonstration marked by release year[44]
Fig. 4. Schematic diagrams of crystal structure of typical 2D materials[55]. (a) Graphene; (b) transition metal dichalcogenides; (c) black phosphorus; (d) hexagonal boron nitride
Fig. 6. Wafer bonding[21]. (a) Schematic diagram of the key components of a wafer bonding machine; (b) types of wafer bonding processes currently used in semiconductor technology
Fig. 7. Flow chart of wafer bonding process[21]. (a) Direct (O2 plasma-assisted/SiO2 covalent) wafer bonding; (b) intermediate layer wafer bonding (DVS-BCB)
Fig. 9. On-chip heterogeneous integrated optical waveguides. (a) Lithium niobate-amorphous silicon optical waveguide based on monolithic integration[90]; (b) silicon-lithium niobate optical waveguide based on wafer bonding[91]; (c) lithium niobate-silicon nitride optical waveguide based on monolithic integration[92]; (d) silicon nitride-lithium niobate optical waveguide based on wafer bonding[93]; (e) lithium niobate-polymer optical waveguide based on monolithic integration[95]
Fig. 10. On-chip heterogeneous integrated passive devices. (a) Silicon nitride-αSi grating coupler[98]; (b) silicon nitride-assisted edge coupler[99]; (c) arrayed waveguide grating based on polymer loaded lithium niobate[100]; (d) silicon nitride-loaded lithium niobate-based power beam splitter[101]; (e) wavelength-division multiplexer (WDM) based on subwavelength grating[102]; (f) mode multiplexer[103]; (g) polarization beam splitter rotator[103]; (h) polarizer based on subwavelength grating[104]; (i) polarization rotator[105]
Fig. 11. On-chip heterogeneous integrated lasers. (a) Pokels laser fabricated by horizontal aligning technique[107]; (b) on-chip laser fabricated by horizontal aligning technique[109]; (c) LN-Ⅲ-Ⅴ heterogeneous integrated laser fabricated by photonic wire bonding[110]; (d) narrow linewidth laser through Ⅲ-Ⅴ/Si/Si3N4 multi-layer bonding[111]; (e) high speed evanescent quantum-dot lasers on silicon based on wafer bonding[113]; (f) silicon Ⅲ-Ⅴ heterogeneous integrated lasers fabricated using wafer bonding[114]; (g) DFB laser implemented on silicon substrate using micro-transfer technology[116]; (h) Ⅲ-Ⅴ DFB laser implemented on a silicon substrate by using micro-transfer technology[117]; (i) Ⅲ-Ⅴ on lithium niobate substrates using micro-transfer technology lasers[118]; (j) 1.3 μm quantum dot DFB lasers directly grown on silicon substrates[120]; (k) InP sub-micron line and large size InP film lasers selectively grown on SOI wafers[121]; (l) direct growth of group Ⅲ-Ⅴ quantum dot lasers on SOI trenches[122]
Fig. 12. On-chip heterogeneous integrated EO modulators. (a) Germanium-silicon electro-absorption modulator[123]; (b) silicon-based graphene electro-absorption modulator[124]; (c) silicon-graphene-hBN electro-absorption modulator[125]; (d) silicon-lithium niobate heterogeneously integrated EO modulator[96]; (e) silicon-lithium niobate heterogeneous EO modulator[127]; (f) silicon nitride-loaded lithium niobate heterogeneously integrated EO modulator[92]; (g) silicon nitride-lithium niobate heterogeneous integrated EO modulator based on micro-transfer technology[129]; (h) lithium tantalate-amorphous silicon topological photonic heterogeneous integrated EO modulator[130]; (i) silicon nitride-Ferroelectric PZT thin film heterogeneous integrated EO modulator[131]; (j) silicon-BTO heterogeneous integrated EO modulator[133]; (k) BTO-silicon nitride heterogeneously integrated micro-ring modulator[135]; (l) silicon-polymer heterogeneously integrated racetrack micro-ring modulator[136]
Fig. 13. On-chip heterogeneously integrated detectors. (a) First high-speed waveguide-coupled photodetector based on germanium-silicon heterogeneous integration[139]; (b) silicon germanium photodetector with bandwidth up to 265 GHz[140]; (c) high-speed waveguide-coupled Ge/Si impedance resonance APD[141]; (d) Ⅲ-Ⅴ type photodetectors grown directly on InP-SOI platforms parallel to the silicon device layer[143]; (e) InGaAs bonded to thin-film lithium niobate single line-wave photodiode[145]; (f) plasma-enhanced waveguide integrated graphene photodetector[147]; (g) hybrid silicon-BP waveguide photodetectors[148]; (h) Van der Waals heterostructured photodiodes consisting of BP and MoS2 layers[149]
Fig. 14. On-chip heterogeneously integrated photonic systems. (a) Silicon-silicon nitride heterogeneous integrated OPA based on PN junction phase shifter[151]; (b) silicon-silicon nitride heterogeneous integrated OPA based on TO phase shifter[152]; (c) lithium niobate-silicon nitride hybrid-integrated EO OPA[154]; (d) fully integrated hybrid microwave photonics receiver[156]; (e) fully integrated microwave photonics filter[157]; (f) lithium niobate-silicon nitride heterogeneous integrated microwave photonic multiparameter measurement system; (g) mode-locked laser with wafer bonding integration of silicon nitride and Ⅲ-Ⅴ semiconductor optical amplifier wafers[161]; (h) Ⅲ-Ⅴ-LN heterogeneous integrated microcomb lasers[163]; (i) platform-independent lasers utilizing micro-transfer technology[164]; (j) optical neural network based on phase change materials[167]; (k) germanium-based silicon photodiode-based nonlinear activator[169]; (l) MoTe2-based all-optical nonlinear activator[171]
|
|
Get Citation
Copy Citation Text
Liheng Wang, Zhen Han, Shijing Qin, Yonghui Tian, Mingbin Yu. Research Progress of Heterogeneous Integrated Photonic Technology for Multi-Material Systems (Invited)[J]. Acta Optica Sinica, 2025, 45(17): 1720008
Category: Optics in Computing
Received: May. 30, 2025
Accepted: Jun. 30, 2025
Published Online: Sep. 3, 2025
The Author Email: Yonghui Tian (tianyh@lzu.edu.cn), Mingbin Yu (mingbin.yu@mksemicon.com)
CSTR:32393.14.AOS251182