Acta Optica Sinica, Volume. 45, Issue 17, 1720008(2025)

Research Progress of Heterogeneous Integrated Photonic Technology for Multi-Material Systems (Invited)

Liheng Wang1, Zhen Han1, Shijing Qin1, Yonghui Tian1、**, and Mingbin Yu2、*
Author Affiliations
  • 1School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, Gansu , China
  • 2Shanghai Mingkun Semiconductor Co., Ltd., Shanghai 201800, China
  • show less
    Figures & Tables(16)
    3D integration enables ultralow-noise isolator-free lasers in silicon photonics[22]
    Progress of silicon nitride based photonic integration, with emphasis on demonstration marked by release year[44]
    Schematic of the smart-cut process for LNOI wafer[45]
    Schematic diagrams of crystal structure of typical 2D materials[55]. (a) Graphene; (b) transition metal dichalcogenides; (c) black phosphorus; (d) hexagonal boron nitride
    Process flow classification of heterogeneous integration technology
    Wafer bonding[21]. (a) Schematic diagram of the key components of a wafer bonding machine; (b) types of wafer bonding processes currently used in semiconductor technology
    Flow chart of wafer bonding process[21]. (a) Direct (O2 plasma-assisted/SiO2 covalent) wafer bonding; (b) intermediate layer wafer bonding (DVS-BCB)
    Schematic diagram of micro-transfer technology[85]
    On-chip heterogeneous integrated optical waveguides. (a) Lithium niobate-amorphous silicon optical waveguide based on monolithic integration[90]; (b) silicon-lithium niobate optical waveguide based on wafer bonding[91]; (c) lithium niobate-silicon nitride optical waveguide based on monolithic integration[92]; (d) silicon nitride-lithium niobate optical waveguide based on wafer bonding[93]; (e) lithium niobate-polymer optical waveguide based on monolithic integration[95]
    On-chip heterogeneous integrated passive devices. (a) Silicon nitride-αSi grating coupler[98]; (b) silicon nitride-assisted edge coupler[99]; (c) arrayed waveguide grating based on polymer loaded lithium niobate[100]; (d) silicon nitride-loaded lithium niobate-based power beam splitter[101]; (e) wavelength-division multiplexer (WDM) based on subwavelength grating[102]; (f) mode multiplexer[103]; (g) polarization beam splitter rotator[103]; (h) polarizer based on subwavelength grating[104]; (i) polarization rotator[105]
    On-chip heterogeneous integrated lasers. (a) Pokels laser fabricated by horizontal aligning technique[107]; (b) on-chip laser fabricated by horizontal aligning technique[109]; (c) LN-Ⅲ-Ⅴ heterogeneous integrated laser fabricated by photonic wire bonding[110]; (d) narrow linewidth laser through Ⅲ-Ⅴ/Si/Si3N4 multi-layer bonding[111]; (e) high speed evanescent quantum-dot lasers on silicon based on wafer bonding[113]; (f) silicon Ⅲ-Ⅴ heterogeneous integrated lasers fabricated using wafer bonding[114]; (g) DFB laser implemented on silicon substrate using micro-transfer technology[116]; (h) Ⅲ-Ⅴ DFB laser implemented on a silicon substrate by using micro-transfer technology[117]; (i) Ⅲ-Ⅴ on lithium niobate substrates using micro-transfer technology lasers[118]; (j) 1.3 μm quantum dot DFB lasers directly grown on silicon substrates[120]; (k) InP sub-micron line and large size InP film lasers selectively grown on SOI wafers[121]; (l) direct growth of group Ⅲ-Ⅴ quantum dot lasers on SOI trenches[122]
    On-chip heterogeneous integrated EO modulators. (a) Germanium-silicon electro-absorption modulator[123]; (b) silicon-based graphene electro-absorption modulator[124]; (c) silicon-graphene-hBN electro-absorption modulator[125]; (d) silicon-lithium niobate heterogeneously integrated EO modulator[96]; (e) silicon-lithium niobate heterogeneous EO modulator[127]; (f) silicon nitride-loaded lithium niobate heterogeneously integrated EO modulator[92]; (g) silicon nitride-lithium niobate heterogeneous integrated EO modulator based on micro-transfer technology[129]; (h) lithium tantalate-amorphous silicon topological photonic heterogeneous integrated EO modulator[130]; (i) silicon nitride-Ferroelectric PZT thin film heterogeneous integrated EO modulator[131]; (j) silicon-BTO heterogeneous integrated EO modulator[133]; (k) BTO-silicon nitride heterogeneously integrated micro-ring modulator[135]; (l) silicon-polymer heterogeneously integrated racetrack micro-ring modulator[136]
    On-chip heterogeneously integrated detectors. (a) First high-speed waveguide-coupled photodetector based on germanium-silicon heterogeneous integration[139]; (b) silicon germanium photodetector with bandwidth up to 265 GHz[140]; (c) high-speed waveguide-coupled Ge/Si impedance resonance APD[141]; (d) Ⅲ-Ⅴ type photodetectors grown directly on InP-SOI platforms parallel to the silicon device layer[143]; (e) InGaAs bonded to thin-film lithium niobate single line-wave photodiode[145]; (f) plasma-enhanced waveguide integrated graphene photodetector[147]; (g) hybrid silicon-BP waveguide photodetectors[148]; (h) Van der Waals heterostructured photodiodes consisting of BP and MoS2 layers[149]
    On-chip heterogeneously integrated photonic systems. (a) Silicon-silicon nitride heterogeneous integrated OPA based on PN junction phase shifter[151]; (b) silicon-silicon nitride heterogeneous integrated OPA based on TO phase shifter[152]; (c) lithium niobate-silicon nitride hybrid-integrated EO OPA[154]; (d) fully integrated hybrid microwave photonics receiver[156]; (e) fully integrated microwave photonics filter[157]; (f) lithium niobate-silicon nitride heterogeneous integrated microwave photonic multiparameter measurement system; (g) mode-locked laser with wafer bonding integration of silicon nitride and Ⅲ-Ⅴ semiconductor optical amplifier wafers[161]; (h) Ⅲ-Ⅴ-LN heterogeneous integrated microcomb lasers[163]; (i) platform-independent lasers utilizing micro-transfer technology[164]; (j) optical neural network based on phase change materials[167]; (k) germanium-based silicon photodiode-based nonlinear activator[169]; (l) MoTe2-based all-optical nonlinear activator[171]
    • Table 1. Basic characteristics of common photonic integrated materials

      View table

      Table 1. Basic characteristics of common photonic integrated materials

      MaterialRefractive index@1550 nmLoss /(dB/cm) @1550 nmBand gapThermo-optic coefficient /K-1Nonlinear refractive index (Kerr coefficient) /(m2/W)Electro-optic coefficient /(pm/V)
      Si3.480.2[70]Indirect1.84×10-4[71]5.52×10-18[72]
      Ge4.20Indirect3.13×10-17[73]
      InP3.17<0.5Direct1.94×10-4[74]
      GaAs3.674.0[75]Direct2.67×10-4[74]1.59×10-17[76]1.5[77]
      Si3N42.00<0.1[44]Indirect2.40×10-5[78]2.40×10-15[79]
      LiNbO32.21(o), 2.14(e)<0.5Indirect3.34×10-5[71]1.80×10-19[45]~30.4[17]
      Graphene2.97Zero[57]1.00×10-12[80]
    • Table 2. Comparison of heterogeneous integration technologies

      View table

      Table 2. Comparison of heterogeneous integration technologies

      Integration approachScaleActive-passive optical couplingProduction efficiencyIndustrial maturity
      Hybrid integration★★★★★★★
      Wafer bonding★★★★★★★★★★★
      Transfer print★★★★★★
      Monolithic integration★★★★★★★★★
    Tools

    Get Citation

    Copy Citation Text

    Liheng Wang, Zhen Han, Shijing Qin, Yonghui Tian, Mingbin Yu. Research Progress of Heterogeneous Integrated Photonic Technology for Multi-Material Systems (Invited)[J]. Acta Optica Sinica, 2025, 45(17): 1720008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics in Computing

    Received: May. 30, 2025

    Accepted: Jun. 30, 2025

    Published Online: Sep. 3, 2025

    The Author Email: Yonghui Tian (tianyh@lzu.edu.cn), Mingbin Yu (mingbin.yu@mksemicon.com)

    DOI:10.3788/AOS251182

    CSTR:32393.14.AOS251182

    Topics