Journal of Inorganic Materials, Volume. 40, Issue 4, 348(2025)
[1] LI M, LU J, CHEN Z et al. 30 years of lithium-ion batteries[J]. Adv. Mater., 1800561(2018).
[2] HU M, HUANG L, LI H et al. Research progress on hard carbon anode for Li/Na-ion batteries[J]. J. Inorg. Mater., 32(2024).
[3] YANG B, QIAN Y, LI Q et al. Critical summary and perspectives on state-of-health of lithium-ion battery[J]. Renew. Sust. Energ. Rev., 114077(2024).
[4] SHAO R, SUN Z, WANG L et al. Resolving the origins of superior cycling performance of antimony anode in sodium-ion batteries: a comparison with lithium-ion batteries[J]. Angew. Chem. Int. Ed., e202320183(2024).
[5] VAALMA C, BUCHHOLZ D, WEIL M et al. A cost and resource analysis of sodium-ion batteries[J]. Nat. Rev. Mater., 18013(2018).
[6] KUBOTA K, DAHBI M, HOSAKA T et al. Towards K-ion and Na-ion batteries as “beyond Li-ion”[J]. Chem. Rec., 459(2018).
[7] USISKIN R, LU Y, POPOVIC J et al. Fundamentals, status and promise of sodium-based batteries[J]. Nat. Rev. Mater., 1020(2021).
[9] ZHANG H, GAO Y, LIU X et al. Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems[J]. Adv. Energy Mater., 2300149(2023).
[10] LIU Q, HU Z, CHEN M et al. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries[J]. Small, 1805381(2019).
[12] LI Y, CHEN M, LIU B et al. Heteroatom doping: an effective way to boost sodium ion storage[J]. Adv. Energy Mater., 2000927(2020).
[13] DENG J, LUO W B, CHOU S L et al. Sodium-ion batteries: from academic research to practical commercialization[J]. Adv. Energy Mater., 1701428(2018).
[14] HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future[J]. Chem. Soc. Rev., 3529(2017).
[15] HAO Z, SHI X, YANG Z et al. The distance between phosphate- based polyanionic compounds and their practical application for sodium-ion batteries[J]. Adv. Mater., 2305135(2024).
[16] ZHOU Y, XU G, LIN J et al. Reversible multielectron redox chemistry in a NASICON-type cathode toward high-energy- density and long-life sodium-ion full batteries[J]. Adv. Mater., 2304428(2023).
[17] LU Y, WANG L, CHENG J et al. Prussian blue: a new framework of electrode materials for sodium batteries[J]. Chem. Commun., 6544(2012).
[18] WANG J, DREYER S L, WANG K et al. P2-type layered high- entropy oxides as sodium-ion cathode materials[J]. Mater. Futures, 172(2022).
[19] ZHOU P, CHE Z, MA F et al. Designing water air-stable P2-layered cathodes with delayed P2-O2 phase transition by composition and structure engineering for sodium-ion batteries at high voltage[J]. Chem. Eng. J., 127667(2020).
[20] SUN Y K. Direction for commercialization of O3-type layered cathodes for sodium-ion batteries[J]. ACS Energy Lett., 1278(2020).
[21] ZHANG C, GAO R, ZHENG L et al. New insights into the roles of Mg in improving the rate capability and cycling stability of O3-NaMn0.48Ni0.2Fe0.3Mg0.02O2 for sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 10819(2018).
[22] GAO R M, ZHENG Z J, WANG P F et al. Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries[J]. Energy Storage Mater., 9(2020).
[23] LIU J, KAN W H, LING C D. Insights into the high voltage layered oxide cathode materials in sodium-ion batteries: structural evolution and anion redox[J]. J. Power Sources, 229139(2021).
[24] XU C, ZHAO J, YANG C et al. Polyanionic cathode materials for practical Na-ion batteries toward high energy density and long cycle life[J]. ACS Cent. Sci., 1721(2023).
[25] LI Y, HE W X, ZHENG X Y et al. Prussian blue cathode materials for aqueous sodium-ion batteries: preparation and electrochemical performance[J]. J. Inorg. Mater., 365(2019).
[27] WANG Y, FENG Z, CUI P et al. Pillar-beam structures prevent layered cathode materials from destructive phase transitions[J]. Nat. Commun., 13(2021).
[28] BERSUKER I B. Jahn-Teller and pseudo-Jahn-Teller effects: from particular features to general tools in exploring molecular and solid state properties[J]. Chem. Rev., 1463(2020).
[29] ESHETU G G, ELIA G A, ARMAND M et al. Electrolytes and interphases in sodium-based rechargeable batteries: recent advances and perspectives[J]. Adv. Energy Mater., 2000093(2020).
[30] WANG Q, MARIYAPPAN S, ROUSSE G et al. Unlocking anionic redox activity in O3-type sodium 3d layered oxides
[31] REN M, ZHAO S, GAO S et al. Homeostatic solid solution in layered transition-metal oxide cathodes of sodium-ion batteries[J]. J. Am. Chem. Soc., 224(2022).
[32] KIM Y, PARK H, SHIN K et al. Rational design of coating ions
[33] ZHANG R, YANG S, LI H et al. Air sensitivity of electrode materials in Li/Na ion batteries: issues and strategies[J]. InfoMat, e12305(2022).
[34] WANG H, GAO X, ZHANG S et al. High-entropy Na-deficient layered oxides for sodium-ion batteries[J]. ACS Nano, 12530(2023).
[35] WANG Y, ZHAO X, JIN J et al. Boosting the reversibility and kinetics of anionic redox chemistry in sodium-ion oxide cathodes
[36] ZHOU P, CHE Z, LIU J et al. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries[J]. Energy Storage Mater., 618(2023).
[37] SHEN X, ZHOU Q, HAN M et al. Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries[J]. Nat. Commun., 2848(2021).
[38] CHEN M, HUA W, XIAO J et al. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density[J]. Nat. Commun., 1480(2019).
[39] WANG K, LIU Z, LIN C et al. Development of quasi-solid-state Na-ion battery based on water-minimal Prussian blue cathode[J]. J. Inorg. Mater., 1005(2024).
[40] PENG J, GAO Y, ZHANG H et al. Ball milling solid-state synthesis of highly crystalline Prussian blue analogue Na2-
[41] SHANG Y, LI X, SONG J et al. Unconventional Mn vacancies in Mn-Fe Prussian blue analogs: suppressing Jahn-Teller distortion for ultrastable sodium storage[J]. Chem, 1804(2020).
[43] WANG W, GANG Y, PENG J et al. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries[J]. Adv. Funct. Mater., 2111727(2022).
[44] HUANG Y, ZHANG X, JI L et al. Boosting the sodium storage performance of Prussian blue analogs by single-crystal and high- entropy approach[J]. Energy Storage Mater., 1(2023).
[45] PENG J, ZHANG B, HUA W et al. A disordered Rubik's cube-inspired framework for sodium-ion batteries with ultralong cycle lifespan[J]. Angew. Chem. Int. Ed., e202215865(2023).
[47] LIU Z, WU J, ZENG J et al. Co-free layered oxide cathode material with stable anionic redox reaction for sodium-ion batteries[J]. Adv. Energy Mater., 2301471(2023).
[48] SHI Q, QI R, FENG X et al. Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries[J]. Nat. Commun., 3205(2022).
[49] ZHAO Q Y, LI J Y, CHEN M J et al. Bimetal substitution enabled energetic polyanion cathode for sodium-ion batteries[J]. Nano Lett., 9685(2022).
[50] WANG J, ZENG W, ZHU J et al. Fe-rich pyrophosphate with prolonged high-voltage-plateaus and suppressed voltage decay as sodium-ion battery cathode[J]. Nano Energy, 108822(2023).
[51] LI Z, SUN C, LI M et al. Na2.5VTi0.5Al0.5(PO4)3 as long lifespan cathode for fast charging sodium-ion batteries[J]. Adv. Funct. Mater., 2315114(2024).
[52] BI Z, HUANG W, MU S et al. Dual-interface reinforced flexible solid garnet batteries enabled by
[53] SHI R, LIU K, ZUO M et al. Interface-reinforced solid-state electrochromic Li-ion batteries enabled by
[54] BI Z, SUN Q, JIA M et al. Molten salt driven conversion reaction enabling lithiophilic and air-stable garnet surface for solid-state lithium batteries[J]. Adv. Funct. Mater., 2208751(2022).
[55] BI Z, SHI R, LIU X.
[56] HUANG G, KONG Q, YAO W et al. High proportion of active nitrogen-doped hard carbon based on mannich reaction as anode material for high-performance sodium-ion batteries[J]. ChemSusChem, e202202070(2023).
[57] HOU Z, ZHANG X, CHEN J et al. Towards high-performance aqueous sodium ion batteries: constructing hollow NaTi2(PO4)3@C nanocube anode with Zn metal-induced pre-sodiation and deep eutectic electrolyte[J]. Adv. Energy Mater., 2104053(2022).
[58] CHE C, WU F, LI Y et al. Challenges and breakthroughs in enhancing temperature tolerance of sodium-ion batteries[J]. Adv. Mater., 2402291(2024).
[59] ZHANG Y, XU J, LI Z et al. All-climate aqueous Na-ion batteries using “water-in-salt” electrolyte[J]. Sci. Bull., 161(2022).
[60] LIU X, ZHENG X, QIN X et al. Temperature-responsive solid- electrolyte-interphase enabling stable sodium metal batteries in a wide temperature range[J]. Nano Energy, 107746(2022).
[61] LIU M, YANG Z, SHEN Y et al. Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy sodium ion batteries[J]. J. Mater. Chem. A, 5639(2021).
[62] MU J J, LIU Z M, LAI Q S et al. An industrial pathway to emerging presodiation strategies for increasing the reversible ions in sodium-ion batteries and capacitors[J]. Energy Mater., 200043(2022).
[63] LIU T, XIANG P, LI Y.
[64] TIAN K, HE H, LI X et al. Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries[J]. J. Mater. Chem. A, 14943(2022).
[65] DING F, ZHAO C, XIAO D et al. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability[J]. J. Am. Chem. Soc., 8286(2022).
[66] TANG Y, ZHANG Q, ZUO W et al. Sustainable layered cathode with suppressed phase transition for long-life sodium-ion batteries[J]. Nat. Sustain., 348(2024).
[67] FENG J, LIU Y, FANG D et al. Reusing the steel slag to design a gradient-doped high-entropy oxide for high-performance sodium ion batteries[J]. Nano Energy, 109030(2023).
[68] MA S, ZOU P, XIN H L. Extending phase-variation voltage zones in P2-type sodium cathodes through high-entropy doping for enhanced cycling stability and rate capability[J]. Mater. Today Energy, 101446(2023).
[69] MU J, CAI T, DONG W et al. Biphasic high-entropy layered oxide as a stable and high-rate cathode for sodium-ion batteries[J]. Chem. Eng. J., 144403(2023).
[70] ZHOU Y, XU G, LIN J et al. A multicationic-substituted configurational entropy-enabled NASICON cathode for high- power sodium-ion batteries[J]. Nano Energy, 109812(2024).
[71] LI M, SUN C, YUAN X et al. A configuration entropy enabled high-performance polyanionic cathode for sodium-ion batteries[J]. Adv. Funct. Mater., 2314019(2024).
[72] SHEN X, HAN M, LI X et al. Regulated synthesis of
[73] LING M, JIANG Q, LI T et al. The mystery from tetragonal NaVPO4F to monoclinic NaVPO4F: crystal presentation, phase conversion, and Na-storage kinetics[J]. Adv. Energy Mater., 2100627(2021).
[74] FAN Z, SONG W, YANG N et al. Insights into the phase purity and storage mechanism of nonstoichiometric Na3.4Fe2.4(PO4)1.4P2O7 cathode for high-mass-loading and high-power-density sodium-ion batteries[J]. Angew. Chem. Int. Ed., e202316957(2024).
[75] ZHANG L M, HE X D, WANG S et al. Hollow-sphere-structured Na4Fe3(PO4)2(P2O7)/C as a cathode material for sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 25972(2021).
[76] TANG Y, LI W, FENG P et al. High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries[J]. Adv. Funct. Mater., 1908754(2020).
[77] PAN T Y, WU C Y, NI C S et al. Improvement in cycling stability of Prussian blue analog-based aqueous sodium-ion batteries by ligand substitution and electrolyte optimization[J]. Electrochim. Acta, 140778(2022).
[78] XU Z, SUN Y, XIE J et al. Scalable preparation of Mn/Ni binary Prussian blue as sustainable cathode for harsh-condition-tolerant sodium- ion batteries[J]. ACS Sustainable Chem. Eng., 13277(2022).
[79] XU Z, SUN Y, XIE J et al. High-performance Ni/Fe-codoped manganese hexacyanoferrate by scale-up synthesis for practical Na-ion batteries[J]. Mater. Today Sustain., 100113(2022).
[80] SHEN L, JIANG Y, LIU Y et al. High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery[J]. Chem. Eng. J., 124228(2020).
[81] TANG Y, WANG L, HU J et al. Epitaxial nucleation of Na
[82] ANG C, LU W, ZHANG Y et al. Toward ultrahigh rate and cycling performance of cathode materials of sodium ion battery by introducing a bicontinuous porous structure[J]. Adv. Mater., 2402005(2024).
[83] BAUER A, SONG J, VAIL S et al. The scale-up and commercialization of nonaqueous Na-ion battery technologies[J]. Adv. Energy Mater., 1702869(2018).
[84] GOIKOLEA E, PALOMARES V, WANG S et al. Na-ion batteries— approaching old and new challenges[J]. Adv. Energy Mater., 2002055(2020).
[85] GAO Y, ZHANG H, PENG J et al. A 30-year overview of sodium-ion batteries[J]. Carbon Energy, e464(2024).
[86] ZHAO L, ZHANG T, LI W et al. Engineering of sodium-ion batteries: opportunities and challenges[J]. Engineering, 172(2022).
[87] RUDOLA A, RENNIE A J, HEAP R et al. Commercialisation of high energy density sodium-ion batteries: Faradion's journey and outlook[J]. J. Mater. Chem. A, 8279(2021).
[88] SAYERS R[J].
[90] HE M, MEJDOUBI A E, CHARTOUNI D et al. High power NVPF/HC-based sodium-ion batteries[J]. J. Power Sources, 233741(2023).
[91] HE M, DAVIS R, CHARTOUNI D et al. Assessment of the first commercial Prussian blue based sodium-ion battery[J]. J. Power Sources, 232036(2022).
[92] LIU Q, HU Z, CHEN M et al. The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus Prussian blue analogs[J]. Adv. Funct. Mater., 1909530(2020).
[93] KUZE S, KAGEURA J I, MATSUMOTO S et al. Development of a sodium ion secondary battery[J]. Sumitomo Kagaku, 2013, 1(2013).
[95] HALL N, BOULINEAU S, CROGUENNEC L et al[J].
[97] LU X, LI S, LI Y et al. From lab to application: challenges and opportunities in achieving fast charging with polyanionic cathodes for sodium-ion batteries[J]. Adv. Mater., 2407359(2024).
[98] XU S Y, WU X Y, LI Y M et al. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries[J]. Chin. Phys. B, 118202(2014).
[99] MU L, XU S, LI Y et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Adv. Mater., 6928(2015).
[100] LI Y, HU Y S, QI X et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications[J]. Energy Storage Mater., 191(2016).
[101] HU Y S, KOMABA S, FORSYTH M et al. A new emerging technology: Na-ion batteries[J]. Small Methods, 1900184(2019).
[104] LI W J, CHOU S L, WANG J Z et al. Facile method to synthesize Na-enriched Na1+
Get Citation
Copy Citation Text
Jiguo ZHANG, Tian WU, Xu ZHAO, Fan YANG, Tian XIA, Shien SUN.
Category:
Received: Aug. 12, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Shien SUN (shiensun@126.com)