Chinese Optics, Volume. 15, Issue 6, 1194(2022)
Large field-of-view optical microscopic imaging technology
[1] PARK J, BRADY D J, ZHENG G A, et al. Review of bio-optical imaging systems with a high space-bandwidth product[J]. Advanced Photonics, 3, 044001(2021).
[2] GUSTAFSSON M G L, AGARD D A, SEDAT J W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination[J]. Proceedings of SPIE, 3919, 141-150(2000).
[3] GUSTAFSSON M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 13081-13086(2005).
[4] ZHENG G A, SHEN CH, JIANG SH W, et al. Concept, implementations and applications of Fourier ptychography[J]. Nature Reviews Physics, 3, 207-223(2021).
[5] BIAN Z CH, GUO CH F, JIANG SH W, et al. Autofocusing technologies for whole slide imaging and automated microscopy[J]. Journal of Biophotonics, 13, e202000227(2020).
[6] TSAI P S, MATEO C, FIELD J J, et al. Ultra-large field-of-view two-photon microscopy[J]. Optics Express, 23, 13833-13847(2015).
[7] OLIVAS S J, ARIANPOUR A, STAMENOV I, et al. Image processing for cameras with fiber bundle image relay[J]. Applied Optics, 54, 1124-1137(2015).
[8] GREENBAUM A, LUO W, SU T W, et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 9, 889-895(2012).
[9] FARAHANI N, PARWANI A, PANTANOWITZ L. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives[J]. Pathology and Laboratory Medicine International, 2015, 23-33(2015).
[10] BARISONI L, LAFATA K J, HEWITT S M, et al. Digital pathology and computational image analysis in nephropathology[J]. Nature Reviews Nephrology, 16, 669-685(2020).
[11] ZHENG G A, OU X Z, YANG C. 0.5 gigapixel microscopy using a flatbed scanner[J]. Biomedical Optics Express, 5, 1-8(2014).
[12] SOFRONIEW N J, FLICKINGER D, KING J, et al. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging[J]. eLife, 5, e14472(2016).
[13] PACHECO S, WANG CH L, CHAWLA M K, et al. High resolution, high speed, long working distance, large field of view confocal fluorescence microscope[J]. Scientific Reports, 7, 13349(2017).
[14] FAN J T, SUO J L, WU J M, et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution[J]. Nature Photonics, 13, 809-816(2019).
[15] WEINSTEIN R S, DESCOUR M R, LIANG CH, et al. An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study[J]. Human Pathology, 35, 1303-1314(2004).
[16] ORTH A, CROZIER K B. High throughput multichannel fluorescence microscopy with microlens arrays[J]. Optics Express, 22, 18101-18112(2014).
[17] SON J, MANDRACCHIA B, JIA SH. Miniaturized modular-array fluorescence microscopy[J]. Biomedical Optics Express, 11, 7221-7235(2020).
[18] HARDIE R C, BARNARD K J, BOGNAR J G, et al. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system[J]. Optical Engineering, 37, 247-260(1998).
[19] COSKUN A F, SENCAN I, SU T W, et al. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects[J]. Optics Express, 18, 10510-10523(2010).
[20] ZHANG Y B, ALEXANDER M, YANG S, et al. High-throughput screening of encapsulated islets using wide-field lens-free on-chip imaging[J]. ACS Photonics, 5, 2081-2086(2018).
[21] JIANG SH W, GUO CH F, SONG P M, et al. Resolution-enhanced parallel coded ptychography for high-throughput optical imaging[J]. ACS Photonics, 8, 3261-3271(2021).
[22] MCCONNELL G, TRÄGÅRDH J, AMOR R, et al. A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout[J]. eLife, 5, e18659(2016).
[23] JONKMAN J, BROWN C M, WRIGHT G D, et al. Tutorial: guidance for quantitative confocal microscopy[J]. Nature Protocols, 15, 1585-1611(2020).
[24] POWER R M, HUISKEN J. A guide to light-sheet fluorescence microscopy for multiscale imaging[J]. Nature Methods, 14, 360-373(2017).
[25] SCHNIETE J, FRANSSEN A, DEMPSTER J, et al. Fast optical sectioning for widefield fluorescence mesoscopy with the mesolens based on HiLo microscopy[J]. Scientific Reports, 8, 16259(2018).
[26] PERON S P, FREEMAN J, IYER V, et al. A cellular resolution map of barrel cortex activity during tactile behavior[J]. Neuron, 86, 783-799(2015).
[27] SOFRONIEW N J, VLASOV Y A, HIRES S A, et al. Neural coding in barrel cortex during whisker-guided locomotion[J]. eLife, 4, 12559(2015).
[28] JI N, FREEMAN J, SMITH S L. Technologies for imaging neural activity in large volumes[J]. Nature Neuroscience, 19, 1154-1164(2016).
[29] LIN P D, JOHNSON R B. Seidel aberration coefficients: an alternative computational method[J]. Optics Express, 27, 19712-19725(2019).
[30] GRAYSON T P. Curved focal plane wide-field-of-view telescope design[J]. Proceedings of SPIE, 4849, 269-275(2002).
[31] KIM M, LEE G J, CHOI C, et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array[J]. Nature Electronics, 3, 546-553(2020).
[32] POTSAID B, BELLOUARD Y, WEN J T. Adaptive Scanning Optical Microscope (ASOM): a multidisciplinary optical microscope design for large field of view and high resolution imaging[J]. Optics Express, 13, 6504-6518(2005).
[33] LECOQ J, SAVALL J, VUČINIĆ D, et al. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging[J]. Nature Neuroscience, 17, 1825-1829(2014).
[34] BARSON D, HAMODI A S, SHEN X L, et al. Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits[J]. Nature Methods, 17, 107-113(2020).
[35] WU Y C, HAN X F, SU Y J, et al. Multiview confocal super-resolution microscopy[J]. Nature, 600, 279-284(2021).
[36] WAGNER M J, KIM T H, KADMON J, et al. Shared cortex-cerebellum dynamics in the execution and learning of a motor task[J]. Cell, 177, 669-682.e24(2019).
[37] KOROMPILI G, KANAKARIS G, AMPATIS C, et al. A portable, optical scanning microsystem for large field of view, high resolution imaging of biological specimens[J]. Sensors and Actuators A:Physical, 279, 367-375(2018).
[38] [38] MCCALL B, PIERCE M, GRAVISS E A, et al. . Toward a lowcost compact array microscopy platfm f detection of tuberculosis[J]. Tuberculosis, 2011, 91 Suppl 1: S54S60.
[39] ORTH A, CROZIER K. Gigapixel fluorescence microscopy with a water immersion microlens array[J]. Optics Express, 21, 2361-2368(2013).
[40] ORTH A, TOMASZEWSKI M J, GHOSH R N, et al. Gigapixel multispectral microscopy[J]. Optica, 2, 654-662(2015).
[41] CUI X Q, LEE L M, HENG X, et al. Lensless high-resolution on-chip optofluidic microscopes for
[42] LEE L M, CUI X Q, YANG C H. The application of on-chip optofluidic microscopy for imaging
[43] LEE S A, OU X Z, LEE J E, et al. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor[J]. Optics Letters, 38, 1817-1819(2013).
[44] SASAGAWA K, OHTA Y, KAWAHARA M, et al. Wide field-of-view lensless fluorescence imaging device with hybrid bandpass emission filter[J]. AIP Advances, 9, 035108(2019).
[45] GUO CH, ZHANG F L, ZHANG X Q, et al. Lensfree super-resolved imaging based on adaptive Wiener filter and guided phase retrieval algorithm[J]. Journal of Optics, 22, 055703(2020).
[46] JIANG SH W, BIAN Z CH, ZHU J K, et al. High-throughput and field-portable ptychographic lensless on-chip microscopy based on translated pattern modulation[J]. Proceedings of SPIE, 11250, 112500E(2020).
[47] OZCAN A, MCLEOD E. Lensless imaging and sensing[J]. Annual Review of Biomedical Engineering, 18, 77-102(2016).
[48] HAN CH, PANG SH, BOWER D V, et al. Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator[J]. Analytical Chemistry, 85, 2356-2360(2013).
[49] FARSIU S, ROBINSON M D, ELAD M, et al. Fast and robust multiframe super resolution[J]. IEEE Transactions on Image Processing, 13, 1327-1344(2004).
[50] GREENBAUM A, LUO W, KHADEMHOSSEINIEH B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 3, 1717(2013).
[51] WU X J, SUN J S, ZHANG J L, et al. Wavelength-scanning lensfree on-chip microscopy for wide-field pixel-super-resolved quantitative phase imaging[J]. Optics Letters, 46, 2023-2026(2021).
[52] ELAD M, HEL-OR Y. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur[J]. IEEE Transactions on Image Processing, 10, 1187-1193(2001).
[53] JIANG SH W, GUO CH F, HU P, et al. High-throughput lensless whole slide imaging via continuous height-varying modulation of a tilted sensor[J]. Optics Letters, 46, 5212-5215(2021).
[54] VAN PUTTEN E G, AKBULUT D, BERTOLOTTI J, et al. Scattering lens resolves sub-100 nm structures with visible light[J]. Physical Review Letters, 106, 193905(2011).
[55] CHOI Y, YOON C, KIM M, et al. Optical imaging with the use of a scattering lens[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 6800213(2014).
[56] PARK J H, PARK C, YU H, et al. Subwavelength light focusing using random nanoparticles[J]. Nature Photonics, 7, 454-458(2013).
[57] LI ZH, TAPHANEL M, LÄNGLE T, et al. Confocal fluorescence microscopy with high-NA diffractive lens arrays[J]. Applied Optics, 61, A37-A42(2022).
[58] WANG R K K. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues[J]. Physics in Medicine & Biology, 47, 2281-2299(2002).
[59] WANG J, ZHANG Y, XU T H, et al. An innovative transparent cranial window based on skull optical clearing[J]. Laser Physics Letters, 9, 469-473(2012).
[60] CUNHA R, LAFETA L, FONSECA E A, et al. Multimodal microscopy for characterization of amyloid-β plaques biomarkers in animal model of Alzheimer's disease[J]. Analyst, 146, 2945-2954(2021).
[61] JIANG L W, WANG X F, WU Z Y, et al. Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy[J]. Laser Physics Letters, 14, 105401(2017).
[62] TARANDA J, TURCAN S. 3D whole-brain imaging approaches to study brain tumors[J]. Cancers, 13, 1897(2021).
[63] CALOVI S, SORIA F N, TØNNESEN J. Super-resolution STED microscopy in live brain tissue[J]. Neurobiology of Disease, 156, 105420(2021).
[64] LI A N, GONG H, ZHANG B, et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain[J]. Science, 330, 1404-1408(2010).
[65] RAGAN T, KADIRI L R, VENKATARAJU K U, et al. Serial two-photon tomography for automated
[66] TSAI P S, FRIEDMAN B, IFARRAGUERRI A I, et al. All-optical histology using ultrashort laser pulses[J]. Neuron, 39, 27-41(2003).
[67] LIN H H, LAI J S Y, CHIN A L, et al. A map of olfactory representation in the
[68] ZHU D, LARIN K V, LUO Q M, et al. Recent progress in tissue optical clearing[J]. Laser & Photonics Reviews, 7, 732-757(2013).
[69] UEDA H R, ERTÜRK A, CHUNG K, et al. Tissue clearing and its applications in neuroscience[J]. Nature Reviews Neuroscience, 21, 61-79(2020).
[70] HAMA H, KUROKAWA H, KAWANO H, et al. Sca
[71] ERTÜRK A, MAUCH C P, HELLAL F, et al. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury[J]. Nature Medicine, 18, 166-171(2012).
[72] ZHU D, WANG J, ZHI ZH W, et al. Imaging dermal blood flow through the intact rat skin with an optical clearing method[J]. Journal of Biomedical Optics, 15, 026008(2010).
[73] ZHONG H Q, GUO ZH Y, WEI H J, et al. In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography[J]. Journal of Biomedical Optics, 15, 036012(2010).
[74] XIA F, GEVERS M, FOGNINI A, et al. Short-wave infrared confocal fluorescence imaging of deep mouse brain with a superconducting nanowire single-photon detector[J]. ACS Photonics, 8, 2800-2810(2021).
[75] RYU J, KANG U, KIM J, et al. Real-time visualization of two-photon fluorescence lifetime imaging microscopy using a wavelength-tunable femtosecond pulsed laser[J]. Biomedical Optics Express, 9, 3449-3463(2018).
[76] CHENG H, TONG SH, DENG X Q, et al. Deep-brain 2-photon fluorescence microscopy
[77] CHENG H, TONG SH, DENG X Q, et al.
[78] LIU M X, GU B B, WU W B, et al. Binary organic nanoparticles with bright aggregation-induced emission for three-photon brain vascular imaging[J]. Chemistry of Materials, 32, 6437-6443(2020).
[79] LIU W, ZHANG Y H, QI J, et al. NIR-II excitation and NIR-I emission based two-photon fluorescence lifetime microscopic imaging using aggregation-induced emission dots[J]. Chemical Research in Chinese Universities, 37, 171-176(2021).
[80] MAYERICH D, ABBOTT L, MCCORMICK B. Knife-edge scanning microscopy for imaging and reconstruction of three-dimensional anatomical structures of the mouse brain[J]. Journal of Microscopy, 231, 134-143(2008).
[81] SANCATALDO G, GAVRYUSEV V, DE VITO G, et al. Flexible multi-beam light-sheet fluorescence microscope for live imaging without striping artifacts[J]. Frontiers in Neuroanatomy, 13, 7(2019).
[82] WANG F F, WAN H, MA ZH R, et al. Light-sheet microscopy in the near-infrared II window[J]. Nature Methods, 16, 545-552(2019).
[83] GELMAN H, GRUEBELE M. Fast protein folding kinetics[J]. Quarterly Reviews of Biophysics, 47, 95-142(2014).
[84] [84] COPOS C, BANNISH B, GASI K, et al. . Connecting actin polymer dynamics across multiple scales[M]SEGAL R, SHTYLLA B, SINDI S. Using Mathematics to Underst Biological Complexity: From Cells to Populations. Cham: Springer, 2021: 733.
[85] LIU T L, UPADHYAYULA S, MILKIE D E, et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms[J]. Science, 360, eaaq1392(2018).
[86] LI T CH, FU T M, WONG K K L, et al. Cellular bases of olfactory circuit assembly revealed by systematic time-lapse imaging[J]. Cell, 184, 5107-5121.e14(2021).
[87] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).
[88] RUST M J, BATES M, ZHUANG X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).
[89] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).
[90] GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Short communication[J]. Journal of Microscopy, 198, 82-87(2000).
[91] DIEKMANN R, HELLE Ø I, ØIE C I, et al. Chip-based wide field-of-view nanoscopy[J]. Nature Photonics, 11, 322-328(2017).
[92] ARCHETTI A, GLUSHKOV E, SIEBEN C, et al. Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging[J]. Nature Communications, 10, 1267(2019).
[93] HELLE Ø I, COUCHERON D A, TINGUELY J C, et al. Nanoscopy on-a-chip: super-resolution imaging on the millimeter scale[J]. Optics Express, 27, 6700-6710(2019).
[94] CHEN B CH, LEGANT W R, WANG K, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution[J]. Science, 346, 1257998(2014).
[95] GAO R X, ASANO S M, UPADHYAYULA S, et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution[J]. Science, 363, eaau8302(2019).
[96] ZHAO Z Y, XIN B, LI L CH, et al. High-power homogeneous illumination for super-resolution localization microscopy with large field-of-view[J]. Optics Express, 25, 13382-13395(2017).
[97] MAHECIC D, GAMBAROTTO D, DOUGLASS K M, et al. Homogeneous multifocal excitation for high-throughput super-resolution imaging[J]. Nature Methods, 17, 726-733(2020).
[98] MAU A, FRIEDL K, LETERRIER C, et al. Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields[J]. Nature Communications, 12, 3077(2021).
[99] CHMYROV A, LEUTENEGGER M, GROTJOHANN T, et al. Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy[J]. Scientific Reports, 7, 44619(2017).
[100] CHEN F, TILLBERG P W, BOYDEN E S. Expansion microscopy[J]. Science, 347, 543-548(2015).
[101] TILLBERG P W, CHEN F, PIATKEVICH K D, et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies[J]. Nature Biotechnology, 34, 987-992(2016).
[102] FREIFELD L, ODSTRCIL I, FÖRSTER D, et al. Expansion microscopy of zebrafish for neuroscience and developmental biology studies[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, E10799-E10808(2017).
[103] GUO F, HOLLA M, DÍAZ M M, et al. A circadian output circuit controls sleep-wake arousal in
[104] JIN T, GUO H, YAO L, et al. Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms[J]. Journal of Biophotonics, 11, e201700250(2018).
[105] QIN W, JIN T, GUO H, et al. Large-field-of-view optical resolution photoacoustic microscopy[J]. Optics Express, 26, 4271-4278(2018).
[106] MCNABB R P, POLANS J, KELLER B, et al. Wide-field whole eye OCT system with demonstration of quantitative retinal curvature estimation[J]. Biomedical Optics Express, 10, 338-355(2019).
[107] RECHER G, NASSOY P, BADON A. Remote scanning for ultra-large field of view in wide-field microscopy and full-field OCT[J]. Biomedical Optics Express, 11, 2578-2590(2020).
[108] RON A, KALVA S K, PERIYASAMY V, et al. Flash scanning volumetric optoacoustic tomography for high resolution whole-body tracking of nanoagent kinetics and biodistribution[J]. Laser & Photonics Reviews, 15, 2000484(2021).
Get Citation
Copy Citation Text
Yi-qiang WANG, Fang-rui LIN, Rui HU, Li-wei LIU, Jun-le QU. Large field-of-view optical microscopic imaging technology[J]. Chinese Optics, 2022, 15(6): 1194
Category: Review
Received: May. 13, 2022
Accepted: Jul. 7, 2022
Published Online: Feb. 9, 2023
The Author Email: