Laser & Infrared, Volume. 55, Issue 6, 969(2025)
Low overlap point cloud registration method based on graph convolution feature extraction
[1] [1] Yang J L, Li H D, Campbell D, et al. Go-ICP: a globally optimal solution to 3D ICP point-set registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(11): 2241-2254.
[2] [2] Lu J, Wang W, Shao H X, et al. Point cloud registration algorithm fusing of super4PCS and ICP based on the key points[C]//2019 Chinese Control Conference (CCC). Guangzhou: IEEE, 2019: 4439-4444.
[3] [3] Qi C R, Su H, Mo K, et al. PointNet: deep learning on point Sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 652-660.
[4] [4] Qi C R, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017: 5105-5114.
[5] [5] Qin Z, Yu H, Wang C J, et al. Geometric transformer for fast and robust point cloud registration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: CVF, 2022: 11143-11152.
[6] [6] Thomas H, Qi C R, Deschaud J E, et al. KPConv: flexible and deformable convolution for point clouds[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: CVF, 2019: 6411-6420.
[7] [7] Lin T Y, Dollr P, Girshick R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 936-944.
[8] [8] Ren K Y, Yan T, Xu Z X, et al. Image attention transformer network for indoor 3D object detection[J]. Science China Technological Sciences, 2024, 67(7): 2176-2190.
[9] [9] Wei M Q, Wei Z Y, Zhou H R, et al. AGConv: adaptive graph convolution on 3D point clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9374-9392.
[10] [10] Wang C, Zhong C. Adaptive feature pyramid networks for object detection[J]. IEEE Access, 2021, 9: 107024-107032.
[11] [11] Wu W X, Qi Z A, Fuxin L. PointConv: deep convolutional networks on 3D point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: CVF, 2019: 9621-9630.
[14] [14] Choy C, Park J, Koltun V. Fully convolutional geometric features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: CVF, 2019: 8958-8966.
[15] [15] Bai X Y, Luo Z X, Zhou L, et al. D3feat: joint learning of dense detection and description of 3D local features[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: CVF, 2020: 6359-6367.
[16] [16] Ao S, Hu Q Y, Yang B, et al. SpinNet: learning a general surface descriptor for 3D point cloud registration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: CVF, 2021: 11753-11762.
[17] [17] Huang S Y, Gojcic Z, Usvyatsov M, et al. PREDATOR: registration of 3D point clouds with low overlap[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: CVF, 2021: 4267-4276.
Get Citation
Copy Citation Text
ZHANG Yuan, YAN Yu-meng, ZHANG Le, PANG Min, HAN Hui-yan. Low overlap point cloud registration method based on graph convolution feature extraction[J]. Laser & Infrared, 2025, 55(6): 969
Category:
Received: Aug. 19, 2024
Accepted: Jul. 30, 2025
Published Online: Jul. 30, 2025
The Author Email: