Chinese Journal of Lasers, Volume. 50, Issue 23, 2310002(2023)

Simulation of Spaceborne Wind Lidar Based on Fizeau Interferometer

Jiahui Kang1,2, Haiyang Gao1,2、*, Shujun Liao3, Leilei Kou1,2, Piman Ding4, Zhen Wang1,2, and Lingbing Bu1,2
Author Affiliations
  • 1Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu , China
  • 2School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044,Jiangsu , China
  • 3Qinghai Meteorological Observatory, Xining 810012, Qinghai , China
  • 4Shanghai Institute of Satellite Engineering, Shanghai 200240, China
  • show less
    References(31)

    [1] Baker W E, Emmitt G D, Robertson F et al. Lidar-measured winds from space: a key component for weather and climate prediction[J]. Bulletin of the American Meteorological Society, 76, 869-888(1995).

    [2] Paffrath U, Lemmerz C, Reitebuch O et al. The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: simulations and Rayleigh receiver radiometric performance[J]. Journal of Atmospheric and Oceanic Technology, 26, 2516-2530(2009).

    [3] Reitebuch O, Lemmerz C, Nagel E et al. The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: instrument design and comparison to satellite instrument[J]. Journal of Atmospheric and Oceanic Technology, 26, 2501-2515(2009).

    [4] Ishii S, Baron P, Aoki M et al. Feasibility study for future space-borne coherent Doppler wind lidar, part 1: instrumental overview for global wind profile observation[J]. Journal of the Meteorological Society of Japan Ser II, 95, 301-317(2017).

    [5] Baron P, Ishii S, Okamoto K et al. Feasibility study for future spaceborne coherent Doppler wind lidar, part 2: measurement simulation algorithms and retrieval error characterization[J]. Journal of the Meteorological Society of Japan Ser II, 95, 319-342(2017).

    [6] Sun X J, Zhang C L, Fang L et al. A review of the technical system of spaceborne Doppler wind lidar and its assessment method[J]. National Remote Sensing Bulletin, 26, 1260-1273(2022).

    [7] Stoffelen A, Pailleux J, Källén E et al. The atmospheric dynamics mission for global wind field measurement[J]. Bulletin of the American Meteorological Society, 86, 73-88(2005).

    [8] Schillinger M, Morancais D, Fabre F et al. ALADIN: the lidar instrument for the AEOLUS mission[J]. Proceedings of SPIE, 4881, 40-51(2003).

    [9] Song J J. The first spaceborne global atmospheric wind lidar was successfully launched[J]. Space International, 40-43(2018).

    [10] Zhai X C, Wu S H, Liu B Y et al. Shipborne wind measurement and motion-induced error correction of a coherent Doppler lidar over the Yellow Sea in 2014[J]. Atmospheric Measurement Techniques, 11, 1313-1331(2018).

    [11] Jin X M, Zhu W Y, Liu Q et al. Numerical modeling and simulation analysis of coherent wind lidar[J]. Acta Optica Sinica, 41, 0601003(2021).

    [12] Liu B M, Guo J P, Gong W et al. Characteristics and performance of wind profiles as observed by the radar wind profiler network of China[J]. Atmospheric Measurement Techniques, 13, 4589-4600(2020).

    [13] Guo J P, Liu B M, Gong W et al. Technical note: first comparison of wind observations from ESA’s satellite mission Aeolus and ground-based radar wind profiler network of China[J]. Atmospheric Chemistry and Physics, 21, 2945-2958(2021).

    [14] Di H G, Hua D X. Research progress of lidar in cloud detection[J]. Acta Optica Sinica, 42, 0600002(2022).

    [15] Chen B L, Yang Z D, Min M et al. Application requirements and research progress of spaceborne Doppler wind lidar[J]. Laser&Optoelectronics Progress, 57, 190003(2020).

    [16] Lu B, Wu D, Zhang T C. Performance simulation of spaceborne coherent Doppler wind lidar based on CALIOP data[J]. Periodical of Ocean University of China, 47, 119-125(2017).

    [17] Zhuang P, Shen F H, Wang B X et al. Rayleigh-Mie wind lidar based on Fabry-Perot interferometer[J]. Chinese Journal of Lasers, 47, 1210001(2020).

    [18] Zhang R W, Sun X J, Yan W et al. Simulation of frequency discrimination for spaceborne Doppler wind lidar (I): study on the retrieval of atmospheric wind speed for Mie channel based on Fizeau interferometer[J]. Acta Physica Sinica, 63, 140702(2014).

    [19] Zhang R W, Sun X J, Yan W et al. Simulation of frequency discrimination for spaceborne Doppler wind lidar (Ⅱ): study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer[J]. Acta Physica Sinica, 63, 140703(2014).

    [20] Zhang C L, Sun X J, Zhang R W et al. Impact of solar background radiation on the accuracy of wind observations of spaceborne Doppler wind lidars based on their orbits and optical parameters[J]. Optics Express, 27, A936-A952(2019).

    [21] Liu Y W, Sun X J, Zhang C L et al. Influence of molecular scattering on Mie channel of spaceborne wind lidar[J]. Laser&Infrared, 49, 156-164(2019).

    [22] Liao S J, Gao H Y, Kou L L et al. Simulation of cloud and aerosol detection based on spaceborne lidar[J]. Laser&Optoelectronics Progress, 59, 1028001(2022).

    [23] Marseille G J, Stoffelen A. Simulation of wind profiles from a space-borne Doppler wind lidar[J]. Quarterly Journal of the Royal Meteorological Society, 129, 3079-3098(2003).

    [24] Liu J Q, Chen W B, Hu Q Q. A wind direct-detection Doppler lidar based on a multi-beam Fizeau interferometer[J]. Chinese Journal of Atmospheric Sciences, 28, 762-770(2004).

    [25] Shen F H, Sun D S, Chen M et al. Analysis of principle of wind velocity measurement with Fizeau interferometer[J]. Chinese Journal of Quantum Electronics, 23, 330-334(2006).

    [26] Bu L B, Chen W B, Zhou J et al. Studies of fringe-technique wind lidar[J]. Acta Photonica Sinica, 38, 175-178(2009).

    [27] Reitebuch O, Huber D, Nikolaus I. ADM-Aeolus ATBD Level 1B Products[R], 22(2018).

    [28] Yang C H, Shen F H, Sun D S. Experimental study of Doppler lidar with Fizeau fringe technique[J]. Laser&Infrared, 39, 724-727(2009).

    [29] Liu Y W. Simulation of spaceborne wind lidar technology based on Mie scattering[D], 47-50(2018).

    [30] Frehlich R G, Yadlowsky M J. Performance of mean-frequency estimators for Doppler radar and lidar[J]. Journal of Atmospheric and Oceanic Technology, 11, 1217-1230(1994).

    [31] Smalikho I. Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar[J]. Journal of Atmospheric and Oceanic Technology, 20, 276-291(2003).

    Tools

    Get Citation

    Copy Citation Text

    Jiahui Kang, Haiyang Gao, Shujun Liao, Leilei Kou, Piman Ding, Zhen Wang, Lingbing Bu. Simulation of Spaceborne Wind Lidar Based on Fizeau Interferometer[J]. Chinese Journal of Lasers, 2023, 50(23): 2310002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Aug. 29, 2022

    Accepted: Nov. 14, 2022

    Published Online: Nov. 27, 2023

    The Author Email: Gao Haiyang (gaohy@nuist.edu.cn)

    DOI:10.3788/CJL221186

    Topics