Opto-Electronic Engineering, Volume. 52, Issue 1, 240250(2025)

PIC2f-YOLO: a lightweight method for the detection of metal surface defects

Yilun Hu1,2, Jun Yang2, Congyuan Xu2, Yajin Xia3, and Wenbin Deng2、*
Author Affiliations
  • 1College of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • 2College of Information Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
  • 3Haiyan ZhongDA METAL Electronic Material Co., LTD, Jiaxing, Zhejiang 314300, China
  • show less
    Figures & Tables(20)
    PIC2f-YOLO structure
    PIBN structure
    PIC2f structure
    Conv and PConv structure. (a) Conv; (b) PConv
    IRMB structure
    AIFI structure
    ADown structure
    Aluminum sheet defects
    Surface defects of strip alloy functional material
    Comparison of defect mAP50-95 values before and after dataset augmentation
    Detection instance of different methods under the NEU-DET dataset. (a) Annotated defect images; (b) YOLOv8n; (c) PIC2f-YOLO
    Detection instance of different methods under the surface defects of strip alloy functional materials datasets. (a) Annotated defect images; (b) YOLOv8n; (c) PIC2f-YOLO
    • Table 1. Number of defect labels for each class in the dataset before and after data augmentation

      View table
      View in Article

      Table 1. Number of defect labels for each class in the dataset before and after data augmentation

      DefectsTraining setValidation setTesting set
      Swelling337/64338/10443/73
      Dent493/98162/12065/118
      Scratch1752/3006189/375228/405
      Peeling1145/1981141/244180/237
      Gap417/63252/7139/86
      Perforation131/23911/2017/27
      Weld285/43229/5130/47
      Snake119/25427/3319/30
    • Table 2. Ablation results

      View table
      View in Article

      Table 2. Ablation results

      MethodsmAP50/%Param/MFLOPs/GFPS/(f/s)
      Baseline75.33.0068.1163
      +M176.92.78811.598
      +M277.13.2388.1128
      +M376.22.5917.2153
      +M1M277.63.01911.584
      +M1M2M378.02.60310.682
    • Table 3. PIC2f experiment results

      View table
      View in Article

      Table 3. PIC2f experiment results

      PConvIRMBmAP50/%Param/M
      75.33.006
      75.62.589
      k=175.82.783
      k=376.92.788
      k=575.62.797
      k=774.92.811
      k=975.32.829
    • Table 4. Generalization experiment results on the aluminum sheet surface industrial defect dataset

      View table
      View in Article

      Table 4. Generalization experiment results on the aluminum sheet surface industrial defect dataset

      MethodsmAP50/%Param/MFPS/(f/s)
      YOLOv8n93.83.006190
      PIC2f-YOLO95.02.60388
    • Table 5. Generalization experiment results on the PASCAL VOC2012 dataset

      View table
      View in Article

      Table 5. Generalization experiment results on the PASCAL VOC2012 dataset

      MethodsmAP50/%Param/MFPS/(f/s)
      YOLOv8n58.83.00971
      PIC2f-YOLO59.22.60645
    • Table 6. Comparison experiment results on the NEU-DET dataset

      View table
      View in Article

      Table 6. Comparison experiment results on the NEU-DET dataset

      MethodsmAP50/%mAP50-95/%Param/MFLOPs/GFPS/(f/s)
      Faster-RCNN76.736.341.37134.032
      YOLOv3-tiny69.635.412.1318.9235
      YOLOv5n74.140.62.507.1160
      YOLOv6n70.036.64.2311.8180
      YOLOv7-tiny67.831.26.0313.2102
      YOLOXs74.639.58.9426.897
      YOLOv9-tiny75.241.92.6210.7130
      YOLOv10n70.938.92.696.7140
      YOLOv8n75.340.73.018.1163
      PIC2f-YOLO78.043.62.6010.682
    • Table 7. Comparison experiment results on the PASCAL VOC2012 dataset

      View table
      View in Article

      Table 7. Comparison experiment results on the PASCAL VOC2012 dataset

      MethodsmAP50/%mAP50-95/%Param/MFLOPs/GFPS/(f/s)
      Faster-RCNN56.040.741.43134.013
      YOLOv3-tiny52.631.812.1318.9107
      YOLOv5n58.040.02.517.171
      YOLOv6n58.943.04.2411.872
      YOLOv7-tiny57.940.46.0613.258
      YOLOXs57.639.58.9626.852
      YOLOv9-tiny59.144.82.6210.792
      YOLOv10n58.943.12.706.795
      YOLOv8n58.840.93.018.171
      PIC2f-YOLO59.241.62.6110.645
    • Table 8. Comparison experiment results on the surface defects of strip alloy functional material dataset

      View table
      View in Article

      Table 8. Comparison experiment results on the surface defects of strip alloy functional material dataset

      MethodsmAP50/%mAP50-95/%Param/MFLOPs/GFPS/(f/s)
      Faster-RCNN57.230.641.43134.020
      YOLOv3-tiny63.533.712.1318.9151
      YOLOv5n72.338.62.507.1108
      YOLOv6n68.937.44.2311.8117
      YOLOv7-tiny69.737.46.0213.198
      YOLOXs66.734.58.9426.895
      YOLOv9-tiny71.337.92.6210.7105
      YOLOv10n64.336.82.696.7110
      YOLOv8n74.142.13.018.1113
      PIC2f-YOLO75.642.82.6110.660
    Tools

    Get Citation

    Copy Citation Text

    Yilun Hu, Jun Yang, Congyuan Xu, Yajin Xia, Wenbin Deng. PIC2f-YOLO: a lightweight method for the detection of metal surface defects[J]. Opto-Electronic Engineering, 2025, 52(1): 240250

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Oct. 23, 2024

    Accepted: Dec. 16, 2024

    Published Online: Feb. 21, 2025

    The Author Email: Wenbin Deng (邓文斌)

    DOI:10.12086/oee.2025.240250

    Topics