Chinese Journal of Lasers, Volume. 51, Issue 8, 0803001(2024)

Optimal Design of SACM Ge/Si APD Based on Poly-Si Bonding Layer

Juan Zhang, Xiaoping Su, Jiahui Li, Zhanren Wang, and Shaoying Ke*
Author Affiliations
  • Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, Fujian , China
  • show less
    Figures & Tables(13)
    Device structure of Ge/Si APD
    Currents at different wavelengths when T=300 K and P=-20 dBm
    Influence of doping concentration on Ge/Si APD when λ=1310 nm, T=300 K, and P=-20 dBm
    Recombination rate versus doping concentration with recombination rate in bond layer shown in inset when λ=1310 nm,T=300 K, P=-20 dBm, and V=0.95Vbr. (a) Ge-APD; (b) Si-APD
    Carrier concentration versus doping concentration when λ=1310 nm, T=300 K, P=-20 dBm, and V=0.95Vbr
    APD energy band versus doping concentration when λ=1310 nm, T=300 K, P=-20 dBm, and V=0.95Vbr
    Charge concentration versus doping concentration when λ=1310 nm, T=300 K, P=-20 dBm, and V=0.95Vbr. (a) Ge-APD; (b) Si-APD
    Effect of doping concentration on performance of Ge/Si APD when λ=1310 nm, T=300 K, P=-20 dBm, and V=0.95Vbr. (a) Impact ionization rate versus doping concentration of Ge layer; (b) impact ionization rate versus doping concentration of Si layer; (c) electron ionization coefficient versus doping concentration of Ge layer; (d) hole ionization coefficient versus doping concentration of Ge layer; (e) electron ionization coefficient versus doping concentration of Si layer; (f) hole ionization coefficient versus doping concentration of Si layer
    Electrical field intensity versus doping concentration when λ=1310 nm, T=300 K, P=-20 dBm, and V=0.95Vbr. (a) Ge-APD; (b) Si-APD
    Gain changes with doping concentration. (a)(b) λ=1310 nm, T=300 K, and P=-20 dBm; (c)(d) λ=1310 nm, T=300 K, P=-20 dBm, and V=0.95Vbr
    3 dB bandwidth and gain bandwidth product versus doping concentration when λ=1310 nm, T=300 K, and P=-20 dBm
    Carrier velocity versus doping concentration when λ=1310 nm, T=300 K, P=-20 dBm, and V=0.95Vbr
    • Table 1. Material parameters of Ge/Si APD

      View table

      Table 1. Material parameters of Ge/Si APD

      ParameterGeSipoly-Si
      Thickness /µm0.8000.5000.002
      Band gap at 300 K /eV0.661.121.15
      Electron affinity /eV444
      Permittivity16.011.811.9
      Doping typenni
      Electron saturation speed /(cm·s-11×1071.3×107
      Hole saturation speed /(cm·s-19×1061×107
      Electron mobility /[cm2·(V·s)-139001450500
      Hole mobility /[cm2·(V·s)-11900500160
      Electron lifetime /s1×10-8
      Hole lifetime /s1×10-8
      NTA /eV1×1016
      NTD /eV1×1016
      WTA /J0.01
      WTD /J0.01
      NGA /eV1×1010
      NGD /eV1×1010
      WGA /J0.27
      WGD /J0.27
      EGA /J0.70
      EGD /J1.22
      SIGTAE1×10-17
      SIGTAH1×10-15
      SIGTDE1×10-15
      SIGTDH1×10-17
      SIGGAE1×10-15
      SIGGAH1×10-14
      SIGGDE1×10-14
      SIGGDH1×10-15
    Tools

    Get Citation

    Copy Citation Text

    Juan Zhang, Xiaoping Su, Jiahui Li, Zhanren Wang, Shaoying Ke. Optimal Design of SACM Ge/Si APD Based on Poly-Si Bonding Layer[J]. Chinese Journal of Lasers, 2024, 51(8): 0803001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Jul. 21, 2023

    Accepted: Sep. 20, 2023

    Published Online: Mar. 29, 2024

    The Author Email: Ke Shaoying (syke@mnnu.edu.cn)

    DOI:10.3788/CJL231048

    CSTR:32183.14.CJL231048

    Topics