Acta Optica Sinica, Volume. 42, Issue 18, 1830002(2022)
XGBoost-Based Inversion of Phytoplankton Pigment Concentrations from Field Measured Fluorescence Excitation Spectra
[1] Li Z H. Remote sensing retrieval and temporal and spatial differentiation of phytoplankton diagnostic pigments in offshore waters[D], 1-7(2021).
[2] Li Z H, Chen Z Z, Wang L Y et al. Remote sensing inversion of concentration of phytoplankton chlorophyll and carotenoid from GOCI measurements in coastal waters[J]. Acta Optica Sinica, 41, 0201001(2021).
[3] Barlow R, Kyewalyanga M, Sessions H et al. Phytoplankton pigments, functional types, and absorption properties in the Delagoa and Natal Bights of the Agulhas ecosystem[J]. Estuarine, Coastal and Shelf Science, 80, 201-211(2008).
[4] Yin G F, Zhao N J, Hu L et al. Classified measurement of phytoplankton based on characteristic fluorescence of photosynthetic pigments[J]. Acta Optica Sinica, 34, 0930005(2014).
[5] Wang G F, Zhang Y X, Xu W L et al. Estimation of phytoplankton pigment concentration in the South China Sea from hyperspectral absorption data[J]. Acta Optica Sinica, 41, 0601002(2021).
[6] Qiao R. Microscope and phytoplankton pigments analysis of the shellfish feeding habits[D], 2-7(2015).
[7] Quéré C L, Harrison S P, Colin Prentice I et al. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models[J]. Global Change Biology, 11, 2016-2040(2005).
[8] Nair A, Sathyendranath S, Platt T et al. Remote sensing of phytoplankton functional types[J]. Remote Sensing of Environment, 112, 3366-3375(2008).
[9] Millie D F, Schofield O M, Kirkpatrick G J et al. Using absorbance and fluorescence spectra to discriminate microalgae[J]. European Journal of Phycology, 37, 313-322(2002).
[10] Tang X J, Zhang Q Q, Lei S H et al. Research on characterization analysis of synchronous fluorescence spectra of living phytoplankton[J]. Spectroscopy and Spectral Analysis, 27, 556-559(2007).
[11] Wang Z G, Liu W Q, Zhang Y J et al. The phytoplankton classified measure based on excitation fluorescence spectra technique[J]. China Environmental Science, 28, 329-333(2008).
[12] Falkowski P G, Raven J A[M]. Aquatic photosynthesis(2007).
[13] Bricaud A, Claustre H, Ras J et al. Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations[J]. Journal of Geophysical Research: Oceans, 109, C11010(2004).
[14] Yentsch C S, Phinney D A. Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations[J]. Journal of Plankton Research, 7, 617-632(1985).
[15] Lorenzen C J. A method for the continuous measurement of in vivo chlorophyll concentration[J]. Deep Sea Research and Oceanographic Abstracts, 13, 223-227(1966).
[16] Holm-Hansen O, Lorenzen C J, Holmes R W et al. Fluorometric determination of chlorophyll[J]. ICES Journal of Marine Science, 30, 3-15(1965).
[17] Kiefer D A. Fluorescence properties of natural phytoplankton populations[J]. Marine Biology, 22, 263-269(1973).
[18] Beutler M, Wiltshire K H, Meyer B et al. A fluorometric method for the differentiation of algal populations in vivo and in situ[J]. Photosynthesis Research, 72, 39-53(2002).
[19] Yoshida M, Horiuchi T, Nagasawa Y. In situ multi-excitation chlorophyll fluorometer for phytoplankton measurements: technologies and applications beyond conventional fluorometers[C](2011).
[20] Chen T Q, Guestrin C. XGBoost: a scalable tree boosting system[C], 785-794(2016).
[21] Zhang Y R, Liu T X, Tong X et al. Hyperspectral remote sensing inversion of meadow aboveground biomass based on an XGBoost algorithm[J]. Acta Prataculturae Sinica, 30, 1-12(2021).
[22] Wang S Q, Xiao C, Ishizaka J et al. Statistical approach for the retrieval of phytoplankton community structures from in situ fluorescence measurements[J]. Optics Express, 24, 23635-23653(2016).
[23] van Heukelem L, Thomas C S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments[J]. Journal of Chromatography A, 910, 31-49(2001).
[24] Kramer S J, Siegel D A. How can phytoplankton pigments be best used to characterize surface ocean phytoplankton groups for ocean color remote sensing algorithms?[J]. Journal of Geophysical Research: Oceans, 124, 7557-7574(2019).
[25] Catlett D, Siegel D A. Phytoplankton pigment communities can be modeled using unique relationships with spectral absorption signatures in a dynamic coastal environment[J]. Journal of Geophysical Research: Oceans, 123, 246-264(2018).
[26] Gong G C, Chen Y L L, Liu K K. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics[J]. Continental Shelf Research, 16, 1561-1590(1996).
[27] Zhou M J, Shen Z L, Yu R C. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River[J]. Continental Shelf Research, 28, 1483-1489(2008).
[28] Yamaguchi H, Kim H C, Son Y B et al. Seasonal and summer interannual variations of SeaWiFS chlorophyll a in the Yellow Sea and East China Sea[J]. Progress in Oceanography, 105, 22-29(2012).
Get Citation
Copy Citation Text
Linqi Wang, Shengqiang Wang, Deyong Sun, Junsheng Li, Yuanli Zhu, Yongjiu Xu, Hailong Zhang. XGBoost-Based Inversion of Phytoplankton Pigment Concentrations from Field Measured Fluorescence Excitation Spectra[J]. Acta Optica Sinica, 2022, 42(18): 1830002
Category: Spectroscopy
Received: Jan. 18, 2022
Accepted: Feb. 28, 2022
Published Online: Sep. 15, 2022
The Author Email: Wang Shengqiang (shengqiang.wang@nuist.edu.cn)