Acta Optica Sinica, Volume. 42, Issue 18, 1830002(2022)

XGBoost-Based Inversion of Phytoplankton Pigment Concentrations from Field Measured Fluorescence Excitation Spectra

Linqi Wang1, Shengqiang Wang1,2、*, Deyong Sun1, Junsheng Li2, Yuanli Zhu3, Yongjiu Xu4, and Hailong Zhang1
Author Affiliations
  • 1School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
  • 2State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
  • 3Second Institute of Oceanography, MNR, Hangzhou 310012, Zhejiang, China
  • 4School of Fishery, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
  • show less
    Figures & Tables(13)
    Distribution histograms of eight pigment concentrations. (a) Perid; (b) 19Butfu; (c) Fucox; (d) 19Hexfu; (e) Allox; (f) Zeax;(g) Chlb; (h) Tchla
    Excitation fluorescence spectrum curves measured in field
    Training performances of pigment concentration inversion models based on XGBoost machine learning algorithm. (a) Perid;(b) 19Butfu; (c) Fucox; (d) 19Hexfu; (e) Allox; (f) Zeax; (g) Chlb; (h) Tchla
    Validation performances of pigment concentration inversion models based on XGBoost machine learning algorithm. (a) Perid; (b) 19Butfu; (c) Fucox; (d) 19Hexfu; (e) Allox; (f) Zeax; (g) Chlb; (h)Tchla
    Profile distributions of eight pigment concentrations in 32.8°N section estimated from fluorescence excitation spectra. (a) Perid;(b) 19Butfu; (c) Fucox; (d) 19Hexfu; (e) Allox; (f) Zeax; (g) Chlb; (h) Tchla
    Training performances of pigment concentration inversion models based on least square regression method. (a) Perid;(b) 19Butfu; (c) Fucox; (d) 19Hexfu; (e) Allox; (f) Zeax; (g) Chlb; (h) Tchla
    Validation performances of concentration inversion models based on least square regression method. (a) Perid; (b) 19Butfu;(c) Fucox; (d) 19Hexfu; (e) Allox; (f) Zeax; (g) Chlb; (h) Tchla
    Comparison of accuracies of pigment concentration inversion models based on XGBoost machine learning algorithm and least square regression method. (a) Model training; (b) model validation
    • Table 1. English names (symbols and full names) of phytoplankton pigments involved in this paper

      View table

      Table 1. English names (symbols and full names) of phytoplankton pigments involved in this paper

      SymbolPigment
      TchlaTotal chlorophyll a
      ChlbChlorophyll b
      FucoxFucoxanthin
      PeridPeridinin
      19Hexfu19′-Hexanoyloxyfucoxanthin
      19Butfu19′-Butanoyloxyfucoxanthin
      AlloxAlloxanthin
      ZeaxZeaxanthin
    • Table 2. Exponential forms of seven excitation fluorescence spectral indicators

      View table

      Table 2. Exponential forms of seven excitation fluorescence spectral indicators

      Spectral indicatorExponential form
      X1lgF(λ1)+lgF(λ2)lgF(λ1)/lgF(λ2)
      X2lgF(λ1)-lgF(λ2)lgF(λ1)/lgF(λ2)
      X3lgF(λ1)-lgF(λ2)lgF(λ1)+lgF(λ2)
      X4lgF(λ)
      X5lgF(λ1)lgF(λ2)
      X6lgF(λ1)F(λ2)
      X7lgF(λ1)+F(λ2)
    • Table 3. Statistics of pigment concentration measured by HPLC

      View table

      Table 3. Statistics of pigment concentration measured by HPLC

      PigmentMinimum valueMaximum valueAverage value
      Tchla0.0786.7301.354
      Fucox02.0000.221
      Perid00.6160.048
      19Hexfu01.0380.125
      19Butfu00.3630.040
      Allox00.5250.032
      Chlb01.3250.163
      Zeax0.0030.8130.120
    • Table 4. Optimal indictor forms of fluorescence excitation spectra and performances inverted by eight pigment concentrations

      View table

      Table 4. Optimal indictor forms of fluorescence excitation spectra and performances inverted by eight pigment concentrations

      PigmentOptimal indictor of fluorescence excitation spectrumTraining datasetValidation dataset
      R2

      RMSE /

      (mg·m-3

      MAPE /%R2RMSE /(mg·m-3MAPE /%
      PeridX30.840.03639.20.770.11049.9
      19ButfuX60.940.02524.10.670.02450.6
      FucoxX60.960.08325.70.870.38246.9
      19HexfuX60.780.10339.20.680.12535.8
      AlloxX50.960.03026.50.860.03738.2
      ZeaxX60.850.06434.50.860.13547.2
      ChlbX50.800.17141.10.590.24164.2
      TchlaX60.980.2107.50.871.16828.1
    • Table 5. Optimal indictor forms of fluorescence excitation spectra, best band combinations and performances inverted by eight pigment concentration based on least square regression method

      View table

      Table 5. Optimal indictor forms of fluorescence excitation spectra, best band combinations and performances inverted by eight pigment concentration based on least square regression method

      PigmentOptimal indictor of fluorescence excitation spectrumBest band combination /nmTraining datasetValidation dataset
      R2RMSE /(mg·m-3MAPE /%R2RMSE /(mg·m-3MAPE /%
      PeridX1λ1=570, λ2=5050.540.06372.10.540.15158.7
      19ButfuX6λ1=505, λ2=5900.550.05395.40.560.02169.7
      FucoxX1λ1=375, λ2=4000.740.16294.50.870.77068.6
      19HexfuX6λ1=375, λ2=4350.430.14262.60.070.17257.3
      AlloxX6λ1=435, λ2=5050.510.091126.90.360.057120.2
      ZeaxX6λ1=435, λ2=5050.420.11980.00.460.186124.5
      ChlbX6λ1=505, λ2=5900.580.21171.00.380.26892.4
      TchlaX7λ1=420, λ2=5050.760.78643.40.750.89345.1
    Tools

    Get Citation

    Copy Citation Text

    Linqi Wang, Shengqiang Wang, Deyong Sun, Junsheng Li, Yuanli Zhu, Yongjiu Xu, Hailong Zhang. XGBoost-Based Inversion of Phytoplankton Pigment Concentrations from Field Measured Fluorescence Excitation Spectra[J]. Acta Optica Sinica, 2022, 42(18): 1830002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Jan. 18, 2022

    Accepted: Feb. 28, 2022

    Published Online: Sep. 15, 2022

    The Author Email: Wang Shengqiang (shengqiang.wang@nuist.edu.cn)

    DOI:10.3788/AOS202242.1830002

    Topics