Acta Optica Sinica, Volume. 42, Issue 18, 1830002(2022)
XGBoost-Based Inversion of Phytoplankton Pigment Concentrations from Field Measured Fluorescence Excitation Spectra
Fig. 1. Distribution histograms of eight pigment concentrations. (a) Perid; (b) 19Butfu; (c) Fucox; (d) 19Hexfu; (e) Allox; (f) Zeax;(g) Chlb; (h) Tchla
Fig. 3. Training performances of pigment concentration inversion models based on XGBoost machine learning algorithm. (a) Perid;(b) 19Butfu; (c) Fucox; (d) 19Hexfu; (e) Allox; (f) Zeax; (g) Chlb; (h) Tchla
Fig. 4. Validation performances of pigment concentration inversion models based on XGBoost machine learning algorithm. (a) Perid; (b) 19Butfu; (c) Fucox; (d) 19Hexfu; (e) Allox; (f) Zeax; (g) Chlb; (h)Tchla
Fig. 5. Profile distributions of eight pigment concentrations in 32.8°N section estimated from fluorescence excitation spectra. (a) Perid;(b) 19Butfu; (c) Fucox; (d) 19Hexfu; (e) Allox; (f) Zeax; (g) Chlb; (h) Tchla
Fig. 6. Training performances of pigment concentration inversion models based on least square regression method. (a) Perid;(b) 19Butfu; (c) Fucox; (d) 19Hexfu; (e) Allox; (f) Zeax; (g) Chlb; (h) Tchla
Fig. 7. Validation performances of concentration inversion models based on least square regression method. (a) Perid; (b) 19Butfu;(c) Fucox; (d) 19Hexfu; (e) Allox; (f) Zeax; (g) Chlb; (h) Tchla
Fig. 8. Comparison of accuracies of pigment concentration inversion models based on XGBoost machine learning algorithm and least square regression method. (a) Model training; (b) model validation
|
|
|
|
|
Get Citation
Copy Citation Text
Linqi Wang, Shengqiang Wang, Deyong Sun, Junsheng Li, Yuanli Zhu, Yongjiu Xu, Hailong Zhang. XGBoost-Based Inversion of Phytoplankton Pigment Concentrations from Field Measured Fluorescence Excitation Spectra[J]. Acta Optica Sinica, 2022, 42(18): 1830002
Category: Spectroscopy
Received: Jan. 18, 2022
Accepted: Feb. 28, 2022
Published Online: Sep. 15, 2022
The Author Email: Wang Shengqiang (shengqiang.wang@nuist.edu.cn)