Acta Optica Sinica, Volume. 44, Issue 5, 0500001(2024)
Metasurfaces-Empowered Optical Micromanipulation (Invited)
[1] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 11, 288-290(1986).
[2] Gao D L, Ding W Q, Nieto-Vesperinas M et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects[J]. Light, Science & Applications, 6, e17039(2017).
[3] Gieseler J, Gomez-Solano J R, Magazzù A et al. Optical tweezers—from calibration to applications: a tutorial[J]. Advances in Optics and Photonics, 13, 74-241(2021).
[4] Otte E, Denz C. Optical trapping gets structure: structured light for advanced optical manipulation[J]. Applied Physics Reviews, 7, 041308(2020).
[5] Volpe G, Maragò O M, Rubinsztein-Dunlop H et al. Roadmap for optical tweezers[J]. Journal of Physics: Photonics, 5, 022501(2023).
[6] Li Y M, Gong L, Li D et al. Progress in optical tweezers technology[J]. Chinese Journal of Lasers, 42, 0101001(2015).
[7] Liang Y S, Yao B L, Lei M et al. Optical micro-manipulation based on spatial modulation of optical fields[J]. Acta Optica Sinica, 36, 1026003(2016).
[8] Zhou Y, Li R Z, Yu X H et al. Progress in study and application of optical field modulation technology based on liquid crystal spatial light modulators (invited)[J]. Acta Photonica Sinica, 50, 1123001(2021).
[9] Gu M, Haumonte J B, Micheau Y et al. Laser trapping and manipulation under focused evanescent wave illumination[J]. Applied Physics Letters, 84, 4236-4238(2004).
[10] Min C J, Shen Z, Shen J F et al. Focused plasmonic trapping of metallic particles[J]. Nature Communications, 4, 2891(2013).
[11] Wang X Y, Zhang Y Q, Dai Y M et al. Enhancing plasmonic trapping with a perfect radially polarized beam[J]. Photonics Research, 6, 847-852(2018).
[12] Xie X, Wang X Y, Min C J et al. Single-particle trapping and dynamic manipulation with holographic optical surface-wave tweezers[J]. Photonics Research, 10, 166-173(2022).
[13] Zhao X T, Zhao N, Shi Y et al. Optical fiber tweezers: a versatile tool for optical trapping and manipulation[J]. Micromachines, 11, 114(2020).
[14] Liu Z H, Guo C K, Yang J et al. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application[J]. Optics Express, 14, 12510-12516(2006).
[15] Bykov D S, Xie S R, Zeltner R et al. Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre[J]. Light: Science & Applications, 7, 22(2018).
[16] Lin L H, Wang M S, Peng X L et al. Opto-thermoelectric nanotweezers[J]. Nature Photonics, 12, 195-201(2018).
[17] Zhang S L, Xu B R, Elsayed M et al. Optoelectronic tweezers: a versatile toolbox for nano-/ micro-manipulation[J]. Chemical Society Reviews, 51, 9203-9242(2022).
[18] Zhong Y L, Peng Y H, Chen J J et al. Optical temperature field-driven tweezers: principles and biomedical applications[J]. Acta Optica Sinica, 43, 1400001(2023).
[19] Linghu S Y, Gu Z Q, Lu J S et al. Plasmon-driven nanowire actuators for on-chip manipulation[J]. Nature Communications, 12, 385(2021).
[20] Killian J L, Ye F, Wang M D. Optical tweezers: a force to be reckoned with[J]. Cell, 175, 1445-1448(2018).
[21] Millen J, Monteiro T S, Pettit R et al. Optomechanics with levitated particles[J]. Reports on Progress in Physics, 83, 026401(2020).
[22] Xin H B, Li Y C, Liu Y C et al. Optical forces: from fundamental to biological applications[J]. Advanced Materials, 32, 2001994(2020).
[23] Shi Y Z, Li Z Y, Liu P Y et al. On-chip optical detection of viruses: a review[J]. Advanced Photonics Research, 2, 2000150(2021).
[24] Wang C Y, Yu Y, Chen Y et al. Efficient quantum memory of orbital angular momentum qubits in cold atoms[J]. Quantum Science and Technology, 6, 045008(2021).
[25] Zeng J W, Albooyeh M, Rajaei M et al. Direct detection of photoinduced magnetic force at the nanoscale reveals magnetic nearfield of structured light[J]. Science Advances, 8, eadd0233(2022).
[26] Chen X X, Wu T L, Gong Z Y et al. Subwavelength imaging and detection using adjustable and movable droplet microlenses[J]. Photonics Research, 8, 225-234(2020).
[27] Yang Y J, Ren Y X, Chen M Z et al. Optical trapping with structured light: a review[J]. Advanced Photonics, 3, 034001(2021).
[28] Jia Q N, Lyu W, Yan W et al. Optical manipulation: from fluid to solid domains[J]. Photonics Insights, 2, R05(2023).
[29] Zhu Z, Zhang Y Q, Zhang S S et al. Nonlinear optical trapping effect with reverse saturable absorption[J]. Advanced Photonics, 5, 046006(2023).
[30] Nan F, Rodríguez-Fortuño F J, Yan S H et al. Creating tunable lateral optical forces through multipolar interplay in single nanowires[J]. Nature Communications, 14, 6361(2023).
[31] Shi Y Z, Xu X H, Nieto-Vesperinas M et al. Advances in light transverse momenta and optical lateral forces[J]. Advances in Optics and Photonics, 15, 835-906(2023).
[32] Lu J S, Yang H B, Zhou L N et al. Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force[J]. Physical Review Letters, 118, 043601(2017).
[33] Li H, Cao Y Y, Zhou L M et al. Optical pulling forces and their applications[J]. Advances in Optics and Photonics, 12, 288-366(2020).
[34] Chen H J, Zheng H X, Lu W L et al. Lateral Optical Force due to the Breaking of Electric-Magnetic Symmetry[J]. Physical Review Letters, 125, 073901(2020).
[35] Zhou Y, Zhang Y N, Xu X H et al. Optical forces on multipoles induced by the belinfante spin momentum[J]. Laser & Photonics Reviews, 17, 2300245(2023).
[36] Xu X H, Nieto-Vesperinas M. Azimuthal imaginary Poynting momentum density[J]. Physical Review Letters, 123, 233902(2019).
[37] Bekshaev A Y, Bliokh K Y, Nori F. Transverse spin and momentum in two-wave interference[J]. Physical Review X, 5, 011039(2015).
[38] Zhou Y, Xu X H, Zhang Y N et al. Observation of high-order imaginary Poynting momentum optomechanics in structured light[J]. Proceedings of the National Academy of Sciences of the United States of America, 119, e2209721119(2022).
[39] Zhu L H, Tai Y P et al. Multidimensional optical tweezers synthetized by rigid-body emulated structured light[J]. Photonics Research, 11, 1524-1534(2023).
[40] Zou X B, Zheng Q, Wu D et al. Controllable cellular micromotors based on optical tweezers[J]. Advanced Functional Materials, 30, 2002081(2020).
[41] Liu M J, Li T Y, Ge Q et al. Phase modulation mechanism and research progress of multifunctional metasurfaces[J]. Acta Optica Sinica, 42, 2126004(2022).
[42] Zang W B, Yuan Q, Chen R et al. Chromatic dispersion manipulation based on metalenses[J]. Advanced Materials, 32, 1904935(2020).
[43] Li T Y, Fu B Y, Ren J Z et al. Multidimensional light field manipulation and applications based on optical metasurface[J]. Proceedings of SPIE, 11850, 1185004(2021).
[44] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).
[45] Chen W T, Zhu A Y, Capasso F. Flat optics with dispersion-engineered metasurfaces[J]. Nature Reviews Materials, 5, 604-620(2020).
[46] Zou X J, Zheng G G, Yuan Q et al. Imaging based on metalenses[J]. PhotoniX, 1, 2(2020).
[47] Sun S L, Yang K Y, Wang C M et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 12, 6223-6229(2012).
[48] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).
[49] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).
[50] Lin R J, Su V C, Wang S M et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 14, 227-231(2019).
[51] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).
[52] Zhao R Z, Sain B, Wei Q S et al. Multichannel vectorial holographic display and encryption[J]. Light: Science & Applications, 7, 95(2018).
[53] Hu Y Q, Li L, Wang Y J et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Letters, 20, 994-1002(2020).
[54] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).
[55] Li L, Liu Z X, Ren X F et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 368, 1487-1490(2020).
[56] Bao Y J, Lin Q L, Su R B et al. On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface[J]. Science Advances, 6, eaba8761(2020).
[57] Shi Y Z, Song Q H, Toftul I et al. Optical manipulation with metamaterial structures[J]. Applied Physics Reviews, 9, 031303(2022).
[58] Shen Z, Huang X Y. A review of optical tweezers with metasurfaces[J]. Photonics, 10, 623(2023).
[59] Fu B Y, Li T Y, Zou X J et al. Steerable chromatic dispersive metalenses in dual bands[J]. Journal of Physics D Applied Physics, 55, 255105(2022).
[60] Ren J Z, Li T Y, Fu B Y et al. Wavelength-dependent multifunctional metalens devices via genetic optimization[J]. Optical Materials Express, 11, 3908-3916(2021).
[61] Li T Y, Li X Y, Yan S H et al. Generation and conversion dynamics of dual Bessel beams with a photonic spin-dependent dielectric metasurface[J]. Physical Review Applied, 15, 014059(2021).
[62] Dorrah A H, Capasso F. Tunable structured light with flat optics[J]. Science, 376, eabi6860(2022).
[63] Xu X H, Cheng C, Zhang Y et al. Scattering and extinction torques: how plasmon resonances affect the orientation behavior of a nanorod in linearly polarized light[J]. The Journal of Physical Chemistry Letters, 7, 314-319(2016).
[64] Nieto-Vesperinas M, Xu X H. The complex Maxwell stress tensor theorem: the imaginary stress tensor and the reactive strength of orbital momentum. A novel scenery underlying electromagnetic optical forces[J]. Light: Science & Applications, 11, 297(2022).
[65] Nieto-Vesperinas M, Xu X H. Reactive helicity and reactive power in nanoscale optics: evanescent waves. Kerker conditions. Optical theorems and reactive dichroism[J]. Physical Review Research, 3, 043080(2021).
[66] Zhang Y, Li T Y, Wang S M et al. Polarization-dependent optical forces arising from fano interference[J]. Advanced Physics Research, 2, 2200048(2023).
[67] Chaumet P C, Nieto-Vesperinas M. Time-averaged total force on a dipolar sphere in an electromagnetic field[J]. Optics Letters, 25, 1065-1067(2000).
[68] Nieto-Vesperinas M, Sáenz J J, Gómez-Medina R et al. Optical forces on small magnetodielectric particles[J]. Optics Express, 18, 11428-11443(2010).
[69] Fu S Y, Shang Z J, Hai L et al. Orbital angular momentum comb generation from azimuthal binary phases[J]. Advanced Photonics Nexus, 1, 016003(2022).
[70] Bliokh K Y, Rodríguez-Fortuño F J, Nori F et al. Spin-orbit interactions of light[J]. Nature Photonics, 9, 796-808(2015).
[71] Ni J C, Huang C, Zhou L M et al. Multidimensional phase singularities in nanophotonics[J]. Science, 374, eabj0039(2021).
[72] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 45, 8185-8189(1992).
[73] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).
[74] Biener G, Niv A, Kleiner V et al. Geometrical phase image encryption obtained with space-variant subwavelength gratings[J]. Optics Letters, 30, 1096-1098(2005).
[75] Chen X Z, Huang L L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1198(2012).
[76] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).
[77] Bao Y J, Ni J C, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Advanced Materials, 32, 1905659(2020).
[78] Deng Z L, Deng J H, Zhuang X et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 18, 2885-2892(2018).
[79] Bao Y J, Wen L, Chen Q et al. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface[J]. Science Advances, 7, eabh0365(2021).
[80] Bliokh K Y, Gorodetski Y, Kleiner V et al. Coriolis effect in optics: unified geometric phase and spin-Hall effect[J]. Physical Review Letters, 101, 030404(2008).
[81] Gorodetski Y, Biener G, Niv A et al. Optical properties of polarization-dependent geometric phase elements with partially polarized light[J]. Optics Communications, 266, 365-375(2006).
[82] Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 44, 255-275(2017).
[83] Colom R, Mikheeva E, Achouri K et al. Crossing of the branch cut: the topological origin of a universal 2π-phase retardation in non-hermitian metasurfaces (laser photonics rev. 17(6)/2023)[J]. Laser & Photonics Reviews, 17, 2370029(2023).
[84] Song Q H, Odeh M, Zúñiga-Pérez J et al. Plasmonic topological metasurface by encircling an exceptional point[J]. Science, 373, 1133-1137(2021).
[85] Balthasar Mueller J P, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).
[86] Chen C, Gao S L, Xiao X J et al. Highly efficient metasurface quarter-wave plate with wave front engineering[J]. Advanced Photonics Research, 2, 2000154(2021).
[87] Liu M Z, Zhu W Q, Huo P C et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states[J]. Light: Science & Applications, 10, 107(2021).
[88] Overvig A C, Malek S C, Carter M J et al. Selection rules for quasibound states in the continuum[J]. Physical Review B, 102, 035434(2020).
[89] Overvig A C, Malek S C, Yu N F. Multifunctional nonlocal metasurfaces[J]. Physical Review Letters, 125, 017402(2020).
[90] Huang H Q, Overvig A C, Xu Y et al. Leaky-wave metasurfaces for integrated photonics[J]. Nature Nanotechnology, 18, 580-588(2023).
[91] Chen R, Li T Y, Bi Q H et al. Quasi-bound states in the continuum-based switchable light-field manipulator[J]. Optical Materials Express, 12, 1232-1241(2022).
[92] Chen R, Bi Q H, Li T Y et al. Dual-wavelength chiral metasurfaces based on quasi-bound states in the continuum[J]. Journal of Optics, 25, 045001(2023).
[93] Yang S, Hong C C, Jiang Y X et al. Nanoparticle trapping in a quasi-BIC system[J]. ACS Photonics, 8, 1961-1971(2021).
[94] Shen Z, Xiang Z Y, Wang Z Y et al. Optical spanner for nanoparticle rotation with focused optical vortex generated through a Pancharatnam-Berry phase metalens[J]. Applied Optics, 60, 4820-4826(2021).
[95] Li B J, Xin Y J, Guo X Y et al. Constructing spin-structured focal fields for chiral-sensitive trapping with dielectric metalens[J]. Frontiers in Physics, 10, 1067825(2022).
[96] He M X, Guo Y H, Li C S et al. Metasurface-based wide-angle beam steering for optical trapping[J]. IEEE Access, 8, 37275-37280(2020).
[97] Cai W Y, Yu H Y, Xu S P et al. Optical focusing based on the planar metasurface reflector with application to trapping cold molecules[J]. Journal of the Optical Society of America B Optical Physics, 35, 3049-3054(2018).
[98] Ma L, Guan J, Wang Y Q et al. Diffraction-limited axial double foci and optical traps generated by optimization-free planar lens[J]. Nanophotonics, 9, 841-853(2020).
[99] Yin S Q, He F, Kubo W et al. Coherently tunable metalens tweezers for optofluidic particle routing[J]. Optics Express, 28, 38949-38959(2020).
[100] Zhang J, MacDonald K F, Zheludev N I. Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces[J]. Physical Review B, 85, 205123(2012).
[101] Chantakit T, Schlickriede C, Sain B et al. All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers[J]. Photonics Research, 8, 1435-1440(2020).
[102] Mahdi Shanei M, Engay E, Käll M. Light-driven transport of microparticles with phase-gradient metasurfaces[J]. Optics Letters, 47, 6428-6431(2022).
[103] Plidschun M, Ren H R, Kim J et al. Ultrahigh numerical aperture meta-fibre for flexible optical trapping[J]. Light: Science & Applications, 10, 57(2021).
[104] Kuo H Y, Vyas S, Chu C H et al. Cubic-phase metasurface for three-dimensional optical manipulation[J]. Nanomaterials, 11, 1730(2021).
[105] Xiao J L, Plaskocinski T, Biabanifard M et al. On-chip optical trapping with high NA metasurfaces[J]. ACS Photonics, 10, 1341-1348(2023).
[106] Markovich H, Shishkin I I, Hendler N et al. Optical manipulation along an optical axis with a polarization sensitive meta-lens[J]. Nano Letters, 18, 5024-5029(2018).
[107] Li T Y, Xu X H, Fu B Y et al. Integrating the optical tweezers and spanner onto an individual single-layer metasurface[J]. Photonics Research, 9, 1062-1068(2021).
[108] Li X Y, Zhou Y, Ge S Y et al. Experimental demonstration of optical trapping and manipulation with multifunctional metasurface[J]. Optics Letters, 47, 977-980(2022).
[109] Wang Y Y, He P T, Liang T et al. A low-noise quadrant photodetector for levitated optomechanical systems[J]. Acta Optica Sinica, 43, 1104001(2023).
[110] Tian Y, Zheng Y, Guo G C et al. Technique and application of vacuum optical tweezers[J]. Physics Experimentation, 41, 1-8, 21(2021).
[111] Han X, Chen X L, Xiong W et al. Vaccum optical tweezers system and its research progress in precision measurement[J]. Chinese Journal of Lasers, 48, 0401011(2021).
[112] Jin Y B, Yan J W, Rahman S J et al. 6 GHz hyperfast rotation of an optically levitated nanoparticle in vacuum[J]. Photonics Research, 9, 1344-1350(2021).
[113] Wang J W, Yang X, Li Y K et al. Optically spatial information selection with hybridly polarized beam in atomic vapor[J]. Photonics Research, 6, 451-456(2018).
[114] Chen Y, Wang J W, Wang C Y et al. Phase gradient protection of stored spatially multimode perfect optical vortex beams in a diffused rubidium vapor[J]. Optics Express, 29, 31582-31593(2021).
[115] Wang J W, Castellucci F, Franke-Arnold S. Vectorial light-matter interaction: exploring spatially structured complex light fields[J]. AVS Quantum Science, 2, 031702(2020).
[116] Qiu S W, Wang J W, Castellucci F et al. Visualization of magnetic fields with cylindrical vector beams in a warm atomic vapor[J]. Photonics Research, 9, 2325-2331(2021).
[117] Gonzalez-Ballestero C, Aspelmeyer M, Novotny L et al. Levitodynamics: Levitation and control of microscopic objects in vacuum[J]. Science, 374, eabg3027(2021).
[118] Hu Y H, Kingsley-Smith J J, Nikkhou M et al. Structured transverse orbital angular momentum probed by a levitated optomechanical sensor[J]. Nature Communications, 14, 2638(2023).
[119] Miao J, Bian G Q, Shan B et al. Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap[J]. Chinese Physics B, 31, 080306(2022).
[120] Zhu L X, Liu X, Sain B et al. A dielectric metasurface optical chip for the generation of cold atoms[J]. Science Advances, 6, eabb6667(2020).
[121] Jin M K, Zhang X, Liu X et al. A centimeter-scale dielectric metasurface for the generation of cold atoms[J]. Nano Letters, 23, 4008-4013(2023).
[122] Hsu T W, Zhu W, Thiele T et al. Single-atom trapping in a metasurface-lens optical tweezer[J]. PRX Quantum, 3, 030316(2022).
[123] Huang X Y, Yuan W J, Holman A et al. Metasurface holographic optical traps for ultracold atoms[J]. Progress in Quantum Electronics, 89, 100470(2023).
[124] Shen K H, Duan Y, Ju P et al. On-chip optical levitation with a metalens in vacuum[J]. Optica, 8, 1359-1362(2021).
[125] Chen J, Ng J, Lin Z F et al. Optical pulling force[J]. Nature Photonics, 5, 531-534(2011).
[126] Brzobohatý O, Karásek V, Šiler M et al. Experimental demonstration of optical transport, sorting and self-arrangement using a 'tractor beam'[J]. Nature Photonics, 7, 123-127(2013).
[127] Dogariu A, Sukhov S, Sáenz J. Optically induced 'negative forces'[J]. Nature Photonics, 7, 24-27(2013).
[128] Novitsky A, Qiu C W, Wang H F. Single gradientless light beam drags particles as tractor beams[J]. Physical Review Letters, 107, 203601(2011).
[129] Pfeiffer C, Grbic A. Generating stable tractor beams with dielectric metasurfaces[J]. Physical Review B, 91, 115408(2015).
[130] Ivinskaya A, Kostina N, Proskurin A et al. Optomechanical manipulation with hyperbolic metasurfaces[J]. ACS Photonics, 5, 4371-4377(2018).
[131] Jin R C, Xu Y H, Dong Z G et al. Optical pulling forces enabled by hyperbolic metamaterials[J]. Nano Letters, 21, 10431-10437(2021).
[132] Kostina N, Petrov M, Bobrovs V et al. Optical pulling and pushing forces via Bloch surface waves[J]. Optics Letters, 47, 4592-4595(2022).
[133] Chu Y J L, Jansson E M, Swartzlander G A. Measurements of radiation pressure owing to the grating momentum[J]. Physical Review Letters, 121, 063903(2018).
[134] Peng M, Luo H, Zhang Z J et al. Optical pulling using chiral metalens as a photonic probe[J]. Nanomaterials, 11, 3376(2021).
[135] Zhang X J, Zangeneh-Nejad F, Chen Z G et al. A second wave of topological phenomena in photonics and acoustics[J]. Nature, 618, 687-697(2023).
[136] Lu L, Joannopoulos J D, Soljačić M. Topological photonics[J]. Nature Photonics, 8, 821-829(2014).
[137] Ozawa T, Price H M, Amo A et al. Topological photonics[J]. Reviews of Modern Physics, 91, 015006(2019).
[138] Lin Z K, Wang Q, Liu Y et al. Topological phenomena at defects in acoustic, photonic and solid-state lattices[J]. Nature Reviews Physics, 5, 483-495(2023).
[139] Wang D L, Qiu C W, Rakich P T et al. Guide-wave photonic pulling force using one-way photonic chiral edge states[C](2015).
[140] Li H, Cao Y Y, Shi B J et al. Momentum-topology-induced optical pulling force[J]. Physical Review Letters, 124, 143901(2020).
[141] Wang N, Zhang R Y, Guo Q H et al. Optical pulling using topologically protected one way transport surface-arc waves[J]. Physical Review B, 105, 014104(2022).
[142] Qu T T, Wang N, Wang M D et al. Flexible electromagnetic manipulation by topological one-way large-area waveguide states[J]. Physical Review B, 105, 195432(2022).
[143] Bi Q H, Peng Y J, Chen R et al. Theory and application of bound states in the continuum in photonics[J]. Acta Optica Sinica, 43, 1623008(2023).
[144] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).
[145] Zhen B, Hsu C W, Lu L et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 113, 257401(2014).
[146] Qin H Y, Shi Y Z, Su Z P et al. Exploiting extraordinary topological optical forces at bound states in the continuum[J]. Science Advances, 8, eade7556(2022).
[147] Du L P, Yang A P, Zayats A V et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum[J]. Nature Physics, 15, 650-654(2019).
[148] Liu M, Zentgraf T, Liu Y M et al. Light-driven nanoscale plasmonic motors[J]. Nature Nanotechnology, 5, 570-573(2010).
[149] Tanaka Y Y, Albella P, Rahmani M et al. Plasmonic linear nanomotor using lateral optical forces[J]. Science Advances, 6, eabc3726(2020).
[150] Wu X F, Ehehalt R, Razinskas G et al. Light-driven microdrones[J]. Nature Nanotechnology, 17, 477-484(2022).
[151] Magallanes H, Brasselet E. Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques[J]. Nature Photonics, 12, 461-464(2018).
[152] Andrén D, Baranov D G, Jones S et al. Microscopic metavehicles powered and steered by embedded optical metasurfaces[J]. Nature Nanotechnology, 16, 970-974(2021).
[153] Qin H Y, Redjem W, Kante B. Tunable and enhanced optical force with bound state in the continuum[J]. Optics Letters, 47, 1774-1777(2022).
[154] Li T Y, Kingsley-Smith J J, Hu Y H et al. Reversible lateral optical force on phase-gradient metasurfaces for full control of metavehicles[J]. Optics Letters, 48, 255-258(2023).
[155] Ilic O, Atwater H A. Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects[J]. Nature Photonics, 13, 289-295(2019).
[156] Li X, Liu Y N, Lin Z F et al. Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters[J]. Nature Communications, 12, 6597(2021).
[157] Ni F C, Liu H G, Zheng Y L et al. Nonlinear harmonic wave manipulation in nonlinear scattering medium via scattering-matrix method[J]. Advanced Photonics, 5, 046010(2023).
[158] Gong F, Ren Y X. Advances in laser dual-trap optical tweezers in single-molecule biophysics[J]. Chinese Journal of Lasers, 50, 1507402(2023).
[159] Xiao Y Q, Shi Y, Li B J et al. Cell manipulation and neuron regulation based on tapered optical fiber tweezers[J]. Chinese Journal of Lasers, 50, 1507302(2023).
[160] Chen X, Gu M. Two-beam ultrafast laser scribing of graphene patterns with 90-nm subdiffraction feature size[J]. Ultrafast Science, 2022, 1(2022).
[161] Hu M Y, Xu S P, Yuan S et al. Breakdown spectroscopy induced by nonlinear interactions of femtosecond laser filaments and multidimensional plasma gratings[J]. Ultrafast Science, 3, 13(2023).
[162] Huang P, Yuan H, Cao H B et al. All-optical sampling of ultrashort laser pulses based on perturbed transient grating[J]. Optics Letters, 47, 5369-5372(2022).
Get Citation
Copy Citation Text
Xiaohao Xu, Wenyu Gao, Tianyue Li, Tianhua Shao, Xingyi Li, Yuan Zhou, Geze Gao, Guoxi Wang, Shaohui Yan, Shuming Wang, Baoli Yao. Metasurfaces-Empowered Optical Micromanipulation (Invited)[J]. Acta Optica Sinica, 2024, 44(5): 0500001
Category: Reviews
Received: Nov. 7, 2023
Accepted: Dec. 29, 2023
Published Online: Mar. 15, 2024
The Author Email: Wang Shuming (wangshuming@nju.edu.cn), Yao Baoli (yaobl@opt.ac.cn)