Electronics Optics & Control, Volume. 32, Issue 8, 103(2025)

Adaptive Neural Network Prescribed Performance Control of Manipulators Based on HJI Theory

ZOU Chenxi1, YANG Di1, HOU Shengyu1, and LEI Zhengling2
Author Affiliations
  • 1School of Chemical Process Automation, Shenyang University of Technology, Shenyang 111000, China
  • 2College of Engineering, Shanghai Ocean University, Shanghai 201000, China
  • show less
    References(14)

    [1] [1] YANG D, LIU W J, LI Z W. Adaptive neural control with guaranteed performance for mechanical systems under uncertain initial conditions: a time-varying neuron approach[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(10): 6194-6204.

    [11] [11] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099.

    [13] [13] TRAN D T, AHN K K. Finite-time fault-tolerant control for a robotic manipulator with output constraint and uncertainties[J]. IEEE Access, 2021, 9: 146771-146782.

    [14] [14] ZHANG S, WU Y, HE X Y, et al. Neural network-based cooperative trajectory tracking control for a mobile dual flexible manipulator[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(9): 6545-6556.

    [15] [15] CUI D, XIANG Z R. Nonsingular fixed-time fault-tolerant fuzzy control for switched uncertain nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 2022, 31(1): 174-183.

    [16] [16] CAI M X, WANG Y, WANG S, et al. Autonomous manipulation of an underwater vehicle-manipulator system by a composite control scheme with disturbance estimation[J]. IEEE Transactions on Automation Science and Engineering, 2023, 21(1): 1012-1022.

    [17] [17] CHHABRA H, MOHAN V, RANI A, et al. Trajectory tracking of Maryland manipulator using linguistic Lyapunov fuzzy controller[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36(3): 2195-2205.

    [18] [18] ZHANG S K, ZHAO Y D, LEE J. Control of 3-DOF robotic manipulator by neural network based fuzzy-PD[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(12): 2109-2118.

    [21] [21] YANG C G, HUANG D Y, HE W, et al. Neural control of robot manipulators with trajectory tracking constraints and input saturation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(9): 4231-4242.

    [22] [22] VAN DER SCHAFT A J. L2 gain analysis of nonlinear systems and nonlinear state feedback H∞ control[J]. IEEE Transactions on Automatic Control, 1992, 37(6): 770-784.

    [23] [23] KIM D W, LEE D. Relaxed conditions for parameterized linear matrix inequality in the form of double fuzzy summation[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(3): 1608-1612.

    [24] [24] QIU J B, SUN K K, WANG T, et al. Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance[J]. IEEE Transactions on Fuzzy systems, 2019, 27(11): 2152-2162.

    [25] [25] ZHAO K, SONG Y D, ZHANG Z R. Tracking control of MIMO nonlinear systems under full state constraints: a single-parameter adaptation approach free from feasibility conditions[J]. Automatica, 2019, 107: 52-60.

    [27] [27] ZHAO K, SONG Y D, MA T D, et al. Prescribed performance control of uncertain Euler-Lagrange systems subject to full-state constraints[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(8): 3478-3489.

    Tools

    Get Citation

    Copy Citation Text

    ZOU Chenxi, YANG Di, HOU Shengyu, LEI Zhengling. Adaptive Neural Network Prescribed Performance Control of Manipulators Based on HJI Theory[J]. Electronics Optics & Control, 2025, 32(8): 103

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 22, 2024

    Accepted: Sep. 5, 2025

    Published Online: Sep. 5, 2025

    The Author Email:

    DOI:10.3969/j.issn.1671-637x.2025.08.017

    Topics