Chinese Journal of Lasers, Volume. 48, Issue 2, 0202014(2021)
Application of Laser Micro-Nano-Fabrication in Sensing Field
[2] Heikenfeld J, Jajack A, Rogers J et al. Wearable sensors: modalities, challenges, and prospects[J]. Lab on a Chip, 18, 217-248(2018).
[3] Rim Y S, Bae S H, Chen H J et al. Recent progress in materials and devices toward printable and flexible sensors[J]. Advanced Materials, 28, 4415-4440(2016).
[4] Li Z Z, Wang L, Fan H et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment[J]. Light, Science & Applications, 9, 41(2020).
[6] Gao J, Shao C X, Shao S X et al. Laser-assisted multiscale fabrication of configuration-editable supercapacitors with high energy density[J]. ACS Nano, 13, 7463-7470(2019).
[7] Yang C, Huang Y X, Cheng H H et al. Rollable, stretchable, and reconfigurable graphene hygroelectric generators[J]. Advanced Materials, 31, 1805705(2019).
[9] Cheng H H, Liu J, Zhao Y et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots[J]. Angewandte Chemie International Edition, 52, 10482-10486(2013).
[10] Jin D D, Chen Q Y, Huang T Y et al. Four-dimensional direct laser writing of reconfigurable compound micromachines[J]. Materials Today, 32, 19-25(2020).
[11] Pradhan S, Keller K A, Sperduto J L et al. Fundamentals of laser-based hydrogel degradation and applications in cell and tissue engineering[J]. Advanced Healthcare Materials, 6, 1700681(2017).
[14] Hong S, Yeo J, Kim G et al. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink[J]. ACS Nano, 7, 5024-5031(2013).
[15] Zang X N, Tai K Y, Jian C Y et al. Laser-induced tar-mediated sintering of metals and refractory carbides in air[J]. ACS Nano, 14, 10413-10420(2020).
[16] Feng S X, Tian Z S, Wang J et al. Laser sintering of Zn microparticles and its application in printable biodegradable electronics[J]. Advanced Electronic Materials, 5, 1800693(2019).
[19] Oh H, Lee M. Laser-direct fabrication of invisible Ag nanowire electrode pattern on flexible plastic substrate[J]. Thin Solid Films, 636, 375-383(2017).
[21] Wang J, Chen H, Zhao Y et al. Programmed ultrafast scan welding of Cu nanowire networks with a pulsed ultraviolet laser beam for transparent conductive electrodes and flexible circuits[J]. ACS Applied Materials & Interfaces, 12, 35211-35221(2020).
[22] Ding Y N, Cui Y C, Liu X H et al. Welded silver nanowire networks as high-performance transparent conductive electrodes: welding techniques and device applications[J]. Applied Materials Today, 20, 100634(2020).
[23] Ghosh P, Lu J S, Chen Z Y et al. Photothermal-induced nanowelding of metal-semiconductor heterojunction in integrated nanowire units[J]. Advanced Electronic Materials, 4, 1700614(2018).
[24] Wilkes G, Deng X Y, Choi J J et al. Laser annealing of TiO2 electron-transporting layer in perovskite solar cells[J]. ACS Applied Materials & Interfaces, 10, 41312-41317(2018).
[26] Abrahamson J P, Singh M, Mathews J P et al. Pulsed laser annealing of carbon black[J]. Carbon, 124, 380-390(2017).
[27] El hamali S O, Cranton W M, Kalfagiannis N et al. Enhanced electrical and optical properties of room temperature deposited aluminium doped zinc oxide (AZO) thin films by excimer laser annealing[J]. Optics and Lasers in Engineering, 80, 45-51(2016).
[28] Wang L, Schmid M, Nilsson Z N et al. Laser annealing improves the photoelectrochemical activity of ultrathin MoSe2 photoelectrodes[J]. ACS Applied Materials & Interfaces, 11, 19207-19217(2019).
[30] Shiojiri D, Yamauchi R, Fukuda D et al. Room-temperature fabrication of highly oriented β-Ga2O3 thin films by excimer laser annealing[J]. Journal of Crystal Growth, 424, 38-41(2015).
[31] Acuautla M, Bernardini S, Gallais L et al. Direct laser patterning of a gas sensor on flexible substrate[J]. Procedia Engineering, 87, 899-902(2014).
[32] Paeng D, Yoo J H, Yeo J et al. Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation[J]. Advanced Materials, 27, 2762-2767(2015).
[34] Lee S H, Park S Y, Lee K J et al. Laser lift-off of GaN thin film and its application to the flexible light emitting diodes[J]. Proceedings of SPIE, 8660, 846011(2012).
[37] Liu Y Q, Chen Z D, Mao J W et al. Laser fabrication of graphene-based electronic skin[J]. Frontiers in Chemistry, 7, 461(2019).
[38] You R, Liu Y Q, Hao Y L et al. Laser fabrication of graphene-based flexible electronics[J]. Advanced Materials, 32, 1901981(2020).
[40] El-Kady M F, Kaner R B. Direct laser writing of graphene electronics[J]. ACS Nano, 8, 8725-8729(2014).
[41] Gao W, Singh N, Song L et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology, 6, 496-500(2011).
[42] El-Kady M F, Strong V, Dubin S et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 335, 1326-1330(2012).
[43] Wan Z F, Streed E W, Lobino M et al. Laser-reduced graphene: synthesis, properties, and applications[J]. Advanced Materials Technologies, 3, 1700315(2018).
[47] Cheng H H, Ye M H, Zhao F et al. A general and extremely simple remote approach toward graphene bulks with in situ multifunctionalization[J]. Advanced Materials, 28, 3305-3312(2016).
[48] Ye R Q, James D K, Tour J M. Laser-induced graphene: from discovery to translation[J]. Advanced Materials, 31, 1803621(2019).
[49] Lin J, Peng Z, Liu Y et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 5, 5714(2014).
[51] Lamberti A, Perrucci F, Caprioli M et al. New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties[J]. Nanotechnology, 28, 174002(2017).
[52] Cai J G, Lv C, Watanabe A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment[J]. Journal of Materials Chemistry A, 4, 1671-1679(2016).
[54] Li Y L, Luong D X, Zhang J B et al. Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces[J]. Advanced Materials, 29, 1700496(2017).
[55] Li L, Zhang J B, Peng Z W et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene[J]. Advanced Materials, 28, 838-845(2016).
[56] Luong D X, Yang K C, Yoon J et al. Laser-induced graphene composites as multifunctional surfaces[J]. ACS Nano, 13, 2579-2586(2019).
[58] Palneedi H, Park J H, Maurya D et al. Laser irradiation of metal oxide films and nanostructures: applications and advances[J]. Advanced Materials, 30, 1705148(2018).
[60] Yeo J, Hong S, Kim G et al. Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design[J]. ACS Nano, 9, 6059-6068(2015).
[62] Zou W Y, Sastry M, Gooding J J et al. Recent advances and a roadmap to wearable UV sensor technologies[J]. Advanced Materials Technologies, 5, 1901036(2020).
[63] Soci C, Zhang A, Xiang B et al. ZnO nanowire UV photodetectors with high internal gain[J]. Nano Letters, 7, 1003-1009(2007).
[64] Wang B, Zhang Z B, Zhong S P et al. Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology[J]. Journal of Materials Chemistry C, 8, 4988-5014(2020).
[65] Yan J B, Yu F Y, Wang X C et al. Al0.3Zn0.7O film UV detector and its laser sintering synthetic process[J]. Applied Surface Science, 504, 144459(2020).
[67] Hadi A A, Badr B A, Mahdi R O et al. Rapid laser fabrication of nickel oxide nanoparticles for UV detector[J]. Optik, 219, 165019(2020).
[68] Cheng Y, Li M K, Wang Q L et al. High performance solar-blind UV detector based on Hf0.38Sn0.62O2 epitaxial film[J]. Applied Physics Letters, 116, 242101(2020).
[69] Xie Y R, Wei L, Li Q H et al. Epitaxial rutile TiO2 film based on MgF2 substrate for ultraviolet detector[J]. Journal of Alloys and Compounds, 683, 439-443(2016).
[70] Chen X H, Han S, Lu Y M et al. High signal/noise ratio and high-speed deep UV detector on β-Ga2O3 thin film composed of both (400) and ( 2¯01) orientation β-Ga2O3 deposited by the PLD method[J]. Journal of Alloys and Compounds, 747, 869-878(2018).
[71] He L N, Wang D, Ma X C et al. Fabrication and characterization of ultraviolet detector based on epitaxial Ta-doped Zn2SnO4 films[J]. Optical Materials, 108, 110224(2020).
[72] Han S, Ji X H, An Q L et al. Effect of laser energy on the crystal structure and UV response characteristics of mixed-phase MgZnO thin films deposited by PLD and the fabrication of high signal/noise ratio solar-blind UV detector based on mix-phase MgZnO at lower voltage[J]. Journal of Materials Chemistry C, 5, 11472-11480(2017).
[73] Wang H Q, Pyatenko A, Kawaguchi K et al. Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres[J]. Angewandte Chemie International Edition, 49, 6361-6364(2010).
[74] Wang H, Pyatenko A, Koshizaki N et al. Single-crystalline ZnO spherical particles by pulsed laser irradiation of colloidal nanoparticles for ultraviolet photodetection[J]. ACS Applied Materials & Interfaces, 6, 2241-2247(2014).
[76] Kwon J, Hong S, Kim G et al. Digitally patterned resistive micro heater as a platform for zinc oxide nanowire based micro sensor[J]. Applied Surface Science, 447, 1-7(2018).
[77] Zhang C, Xie Y C, Deng H et al. Monolithic and flexible ZnS/SnO2 ultraviolet photodetectors with lateral graphene electrodes[J]. Small, 13, 1604197(2017).
[79] Lee H, Manorotkul W, Lee J et al. Nanowire-on-nanowire: all-nanowire electronics by on-demand selective integration of hierarchical heterogeneous nanowires[J]. ACS Nano, 11, 12311-12317(2017).
[80] An J N. Le T S D, Lim C H J, et al. Single-step selective laser writing of flexible photodetectors for wearable optoelectronics[J]. Advanced Science, 5, 1800496(2018).
[82] Dunst K, Jurków D, Jasiński P. Laser patterned platform with PEDOT-graphene composite film for NO2 sensing[J]. Sensors and Actuators B: Chemical, 229, 155-165(2016).
[83] Tao Y F, Wei C, Liu J W et al. Nanostructured electrically conductive hydrogels obtained via ultrafast laser processing and self-assembly[J]. Nanoscale, 11, 9176-9184(2019).
[85] Ueda T, Defferriere T, Hyodo T et al. Nanostructured Pr-doped Ceria (PCO) thin films as sensing electrodes in solid-electrolyte type gas sensors with enhanced toluene sensitivity[J]. Sensors and Actuators B: Chemical, 317, 128037(2020).
[86] Fu H, Liu G Q, Bao H M et al. Ultrathin hexagonal PbO nanosheets induced by laser ablation in water for chemically trapping surface-enhanced Raman spectroscopy chips and detection of trace gaseous H2S[J]. ACS Applied Materials & Interfaces, 12, 23330-23339(2020).
[87] Lei J C, Zhang Q, Zhao Z Y et al. One-step fabrication of nanocrystalline nanonetwork SnO2 gas sensors by integrated multilaser processing[J]. Advanced Materials Technologies, 5, 2000281(2020).
[89] Parellada-Monreal L, Gherardi S, Zonta G et al. WO3 processed by direct laser interference patterning for NO2 detection[J]. Sensors and Actuators B: Chemical, 305, 127226(2020).
[90] Yan W H, Yan W R, Chen T D et al. Size-tunable flowerlike MoS2 nanospheres combined with laser-induced graphene electrodes for NO2 sensing[J]. ACS Applied Nano Materials, 3, 2545-2553(2020).
[91] Chang P Y, Lin C F. El Khoury Rouphael S, et al. Near-infrared laser-annealed IZO flexible device as a sensitive H2S sensor at room temperature[J]. ACS Applied Materials & Interfaces, 12, 24984-24991(2020).
[93] Hou Y, Jayatissa A H. Effect of laser irradiation on gas sensing properties of sol-gel derived nanocrystalline Al-doped ZnO thin films[J]. Thin Solid Films, 562, 585-591(2014).
[94] Yang L, Yi N, Zhu J et al. Novel gas sensing.
[95] Assar M, Karimzadeh R. Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation[J]. Journal of Colloid and Interface Science, 483, 275-280(2016).
[96] Strong V, Dubin S. El-Kady M F, et al. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices[J]. ACS Nano, 6, 1395-1403(2012).
[98] Dosi M, Lau I, Zhuang Y C et al. Ultrasensitive electrochemical methane sensors based on solid polymer electrolyte-infused laser-induced graphene[J]. ACS Applied Materials & Interfaces, 11, 6166-6173(2019).
[99] Zhu J X, Cho M, Li Y T et al. Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene[J]. ACS Applied Materials & Interfaces, 11, 24386-24394(2019).
[100] You R, Han D D, Liu F M et al. Fabrication of flexible room-temperature NO2 sensors by direct laser writing of In2O3 and graphene oxide composites[J]. Sensors and Actuators B: Chemical, 277, 114-120(2018).
[101] Park R, Kim H, Lone S et al. One-step laser patterned highly uniform reduced graphene oxide thin films for circuit-enabled tattoo and flexible humidity sensor application[J]. Sensors, 18, 1857(2018).
[102] An J N. Le T S D, Huang Y, et al. All-graphene-based highly flexible noncontact electronic skin[J]. ACS Applied Materials & Interfaces, 9, 44593-44601(2017).
[105] Lan L Y, Le X H, Dong H Y et al. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface[J]. Biosensors and Bioelectronics, 165, 112360(2020).
[106] Cai J G, Lv C, Aoyagi E et al. Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics[J]. ACS Applied Materials & Interfaces, 10, 23987-23996(2018).
[107] Nie J, Wu Y C, Huang Q Y et al. Dew point measurement using a carbon-based capacitive sensor with active temperature control[J]. ACS Applied Materials & Interfaces, 11, 1699-1705(2019).
[108] Megha R, Ali F A, Ravikiran Y T et al. Conducting polymer nanocomposite based temperature sensors: a review[J]. Inorganic Chemistry Communications, 98, 11-28(2018).
[110] Mizoshiri M, Ito Y, Arakane S et al. 55(6S1): 06GP05(2016).
[111] Zhou X W, Guo W, Fu J et al. Laser writing of Cu/CuxO integrated structure on flexible substrate for humidity sensing[J]. Applied Surface Science, 494, 684-690(2019).
[112] Le T S D, Park S, An J N et al. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics[J]. Advanced Functional Materials, 29, 1902771(2019).
[113] Huang Y, Fan X Y, Chen S C et al. Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing[J]. Advanced Functional Materials, 29, 1808509(2019).
[115] Luo S D, Hoang P T, Liu T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays[J]. Carbon, 96, 522-531(2016).
[116] Rahimi R, Ochoa M, Yu W Y et al. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization[J]. ACS Applied Materials & Interfaces, 7, 4463-4470(2015).
[117] Carvalho A F. Fernandes A J S, Leitão C, et al. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide[J]. Advanced Functional Materials, 28, 1805271(2018).
[119] Wu Q, Qiao Y C, Guo R et al. Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring[J]. ACS Nano, 14, 10104-10114(2020).
[120] Luong D X, Subramanian A K. Silva G A L, et al. Laminated object manufacturing of 3D-printed laser-induced graphene foams[J]. Advanced Materials, 30, 1707416(2018).
[121] Yu S Y, Schrodj G, Mougin K et al. Direct laser writing of crystallized TiO2 and TiO2/carbon microstructures with tunable conductive properties[J]. Advanced Materials, 30, 1805093(2018).
[123] Zheng Q B, Lee J H, Shen X et al. Graphene-based wearable piezoresistive physical sensors[J]. Materials Today, 36, 158-179(2020).
[124] Song J H, Kim H J, Kim M S et al. Direct printing of performance tunable strain sensor via nanoparticle laser patterning process[J]. Virtual and Physical Prototyping, 15, 265-277(2020).
[125] Bai S, Zhang S G, Zhou W P et al. Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors[J]. Nano-Micro Letters, 9, 1-13(2017).
[126] Agarwala S, Goh G L. Dinh Le T S, et al. Wearable bandage-based strain sensor for home healthcare: combining 3D aerosol jet printing and laser sintering[J]. ACS Sensors, 4, 218-226(2019).
[127] Shou W, Mahajan B K, Ludwig B et al. Low-cost manufacturing of bioresorbable conductors by evaporation-condensation-mediated laser printing and sintering of Zn nanoparticles[J]. Advanced Materials, 29, 1700172(2017).
[128] Gao Y, Li Q, Wu R Y et al. Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins[J]. Advanced Functional Materials, 29, 1806786(2019).
[129] Zhu Y S, Cai H B, Ding H Y et al. Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane[J]. ACS Applied Materials & Interfaces, 11, 6195-6200(2019).
[130] dos Santos A, Pinela N, Alves P et al. Piezoresistive e-skin sensors produced with laser engraved molds[J]. Advanced Electronic Materials, 4, 1800182(2018).
[131] Tian H, Shu Y, Wang X F et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range[J]. Scientific Reports, 5, 8603(2015).
[132] Zhu Y S, Li J W, Cai H B et al. Highly sensitive and skin-like pressure sensor based on asymmetric double-layered structures of reduced graphite oxide[J]. Sensors and Actuators B: Chemical, 255, 1262-1267(2018).
[133] Kim K K, Ha I, Won P et al. Transparent wearable three-dimensional touch by self-generated multiscale structure[J]. Nature Communications, 10, 2582(2019).
[134] Yi C H, Hou Y X, He K et al. Highly sensitive and wide linear-response pressure sensors featuring zero standby power consumption under bending conditions[J]. ACS Applied Materials & Interfaces, 12, 19563-19571(2020).
[135] Long Y, He P S, Xu R X et al. Molybdenum-carbide-graphene composites for paper-based strain and acoustic pressure sensors[J]. Carbon, 157, 594-601(2020).
[136] Dinh Le T S, An J N, Huang Y et al. Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors[J]. ACS Nano, 13, 13293-13303(2019).
[137] Tao L Q, Tian H, Liu Y et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene[J]. Nature Communications, 8, 14579(2017).
[138] Atalay A, Sanchez V, Atalay O et al. Batch fabrication of customizable silicone-textile composite capacitive strain sensors for human motion tracking[J]. Advanced Materials Technologies, 2, 1700136(2017).
[140] Yang C C, Lin Y C, Hung M W et al. Force sensor fabrication by AgNWs film using 532 nm pulses laser[J]. Applied Surface Science, 484, 1019-1026(2019).
[141] Park D Y, Joe D J, Kim D H et al. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors[J]. Advanced Materials, 29, 1702308(2017).
[142] Ouyang L, Hu Y W, Zhu L H et al. A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation[J]. Biosensors and Bioelectronics, 92, 755-762(2017).
[144] Han B, Gao Y Y, Zhu L et al. In situ integration of SERS sensors for on-chip catalytic reactions[J]. Advanced Materials Technologies, 5, 1900963(2020).
[145] Xu G Y, Jarjes Z A, Wang H W et al. Detection of neurotransmitters by three-dimensional laser-scribed graphene grass electrodes[J]. ACS Applied Materials & Interfaces, 10, 42136-42145(2018).
[147] Nayak P, Kurra N, Xia C et al. Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications[J]. Advanced Electronic Materials, 2, 1600185(2016).
[148] Barman S C, Zahed M A, Sharifuzzaman M et al. A polyallylamine anchored amine-rich laser-ablated graphene platform for facile and highly selective electrochemical IgG biomarker detection[J]. Advanced Functional Materials, 30, 1907297(2020).
[149] Yao S S, Swetha P, Zhu Y. Nanomaterial-enabled wearable sensors for healthcare[J]. Advanced Healthcare Materials, 7, 1700889(2018).
[150] Yang Y, Song Y, Bo X et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat[J]. Nature Biotechnology, 38, 217-224(2020).
[151] Torrente-Rodríguez R M, Tu J B, Yang Y R et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system[J]. Matter, 2, 921-937(2020).
[153] Paula K T, Gaál G. Almeida G F B, et al. Femtosecond laser micromachining of polylactic acid/graphene composites for designing interdigitated microelectrodes for sensor applications[J]. Optics & Laser Technology, 101, 74-79(2018).
[155] Rahimi R, Ochoa M, Tamayol A et al. Highly stretchable potentiometric pH sensor fabricated via laser carbonization and machining of carbon-polyaniline composite[J]. ACS Applied Materials & Interfaces, 9, 9015-9023(2017).
[156] Rahimi R, Brener U, Chittiboyina S et al. Laser-enabled fabrication of flexible and transparent pH sensor with near-field communication for in situ monitoring of wound infection[J]. Sensors and Actuators B: Chemical, 267, 198-207(2018).
[157] Xu X X, Duan G T, Li Y et al. Fabrication of gold nanoparticles by laser ablation in liquid and their application for simultaneous electrochemical detection of Cd 2+, Pb 2+, Cu 2+, Hg 2+[J]. ACS Applied Materials & Interfaces, 6, 65-71(2014).
[158] Ge L, Hong Q, Li H et al. Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing[J]. Advanced Functional Materials, 29, 1904000(2019).
[159] Beduk T, Ait Lahcen A, Tashkandi N et al. One-step electrosynthesized molecularly imprinted polymer on laser scribed graphene bisphenol a sensor[J]. Sensors and Actuators B: Chemical, 314, 128026(2020).
[161] Verma A K, Das R, Soni R K. Laser fabrication of periodic arrays of microsquares on silicon for SERS application[J]. Applied Surface Science, 427, 133-140(2018).
[162] Wang Y N, Niu Z X, Chen J Y et al. Freestanding laser induced graphene paper based liquid sensors[J]. Carbon, 153, 472-480(2019).
[163] Tai H L, Duan Z H, Wang Y et al. Paper-based sensors for gas, humidity, and strain detections: a review[J]. ACS Applied Materials & Interfaces, 12, 31037-31053(2020).
[164] He P J W, Katis I N, Eason R W et al. Laser direct-write for fabrication of three-dimensional paper-based devices[J]. Lab on a Chip, 16, 3296-3303(2016).
[165] De Araujo W R, Frasson C M R, Ameku W A et al. Single-step reagentless laser scribing fabrication of electrochemical paper-based analytical devices[J]. Angewandte Chemie International Edition, 56, 15113-15117(2017).
[166] Zang X N, Shen C W, Chu Y et al. Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics[J]. Advanced Materials, 30, 1800062(2018).
[167] Luo J J, Yao Y B, Duan X S et al. Force and humidity dual sensors fabricated by laser writing on polyimide/paper bilayer structure for pulse and respiration monitoring[J]. Journal of Materials Chemistry C, 6, 4727-4736(2018).
[168] Dubourg G. Radovi c' M. Multifunctional screen-printed TiO2 nanoparticles tuned by laser irradiation for a flexible and scalable UV detector and room-temperature ethanol sensor[J]. ACS Applied Materials & Interfaces, 11, 6257-6266(2019).
[169] Dhonge B P, Motaung D E, Liu C P et al. Nano-scale carbon onions produced by laser photolysis of toluene for detection of optical, humidity, acetone, methanol and ethanol stimuli[J]. Sensors and Actuators B: Chemical, 215, 30-38(2015).
Get Citation
Copy Citation Text
Changxiang Shao, Yang Zhao, Nan Chen, Hongwei Zhu, Lei Wang, Hongbo Sun, Liangti Qu. Application of Laser Micro-Nano-Fabrication in Sensing Field[J]. Chinese Journal of Lasers, 2021, 48(2): 0202014
Category: laser manufacturing
Received: Sep. 1, 2020
Accepted: Dec. 8, 2020
Published Online: Jan. 7, 2021
The Author Email: Zhao Yang (yzzhao@bit.edu.cn), Qu Liangti (yzzhao@bit.edu.cn)