Chinese Journal of Ship Research, Volume. 20, Issue 3, 275(2025)

AUV path planning method based on improved sparrow search algorithm

Lijun TANG1, Yunxia FAN2, Xingyu ZHOU2, and Qian SUN2
Author Affiliations
  • 1China Ship Development and Design Center, Wuhan 430064, China
  • 2College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
  • show less
    Figures & Tables(13)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Simulation parameters

      View table
      View in Article

      Table 1. Simulation parameters

      参数数值
      航行速度$ {\text{/(m}} \cdot {{\text{s}}^{ - 1}}) $1
      最小回转半径$ /\mathrm{m} $5
      最小俯仰角$ /(^\circ ) $$ - 20 $
      最大俯仰角$ /(^\circ ) $$ 20 $
      安全距离$ /{\text{m}} $2
      权重因子$ {10^6} $
      种群个数$ 30 $
      控制点个数$ 10 $
      最大迭代次数$ 100 $
    • Table 2. AUV minimum/maximum voyage time in various environments

      View table
      View in Article

      Table 2. AUV minimum/maximum voyage time in various environments

      环境最短航行时间/s最长航行时间/s
      PSOSSAISSAPSOSSAISSA
      1532.0504.3414.91 401.1849.6637.5
      2494.9344.1345.81 165.2599.9546.6
      3577.1310.0286.41 927.1560.0636.4
      4506.5318.9303.91 522.3743.1645.5
      5504.9393.8293.92 119.7632.4628.4
      6748.2524.4461.33 915.81018.8967.5
      7522.4350.5353.81 324.6661.5609.5
      8409.9252.2173.11 946.5776.7715.0
      9524.0280.8320.22833.1725.8675.8
      10329.4285.1271.9763.7609.0537.2
      11727.4521.2451.22 509.71 082.21 015.2
      12482.5332.4322.61 469.2607.9560.8
      13586.0297.6235.43 566.5752.7705.1
      14686.8386.0351.53 496.2676.5970.5
      15534.5435.9295.22 715.2785.9604.5
      16327.7322.9203.01 977.5798.6603.4
      17505.8330.7347.31 120.2665.3602.2
      18395.9305.6294.61 224.6615.8631.6
      19788.3566.8474.13 775.71 238.3771.8
      20386.9320.5328.41 224.1648.0643.1
      均值528.5369.1326.42 099.8752.4685.4
    • Table 3. AUV path planning average fitness table in various environments

      View table
      View in Article

      Table 3. AUV path planning average fitness table in various environments

      环境适应度
      PSOSSAISSA
      10.7180.6810.673
      20.6110.5710.564
      30.6750.5780.524
      40.6550.5780.533
      50.6660.5670.528
      60.9200.7600.684
      70.6860.5710.568
      80.6230.4900.479
      90.7480.5390.531
      100.6150.5150.475
      110.9460.7510.655
      120.6890.5480.544
      130.6230.5540.547
      140.7560.5410.533
      150.6600.5690.528
      160.5550.4840.471
      170.6670.5500.538
      180.6320.5250.521
      190.9420.7340.694
      200.6700.5630.527
      均值0.7030.5830.556
    • Table 4. AUV minimum voyage time

      View table
      View in Article

      Table 4. AUV minimum voyage time

      不确定性参数平均最短航行时间/s
      ${\sigma_{\text{d}}}$/(°)${\sigma _{\text{m}}}/( {{\text{m}} \cdot {{\text{s}}^{ - 1}}} )$PSOSSAISSA
      200.20354.6269.3264.1
      200.15351.3248.6246.8
      200.10351.1257.1246.6
      200.05309.9252.1247.8
      150.20386.8272.1271.1
      150.15328.7270.2265.4
      150.10367.2263.7264.8
      150.05359.4273.6261.9
      100.20372.2283.3281.8
      100.15371.0276.8274.7
      100.10345.3285.2272.6
      100.05363.1282.8277.5
      50.20363.2290.9288.8
      50.15349.7292.9290.5
      50.10437.9294.8286.4
      50.05403.8300.7295.4
      均值363.4275.88271.01
    • Table 5. AUV maximum voyage time table

      View table
      View in Article

      Table 5. AUV maximum voyage time table

      不确定性参数平均最长航行时间/s
      ${\sigma_{\text{d}}}$/(°)${\sigma _{\text{m}}}/ ( {{\text{m}} \cdot {{\text{s}}^{ - 1}}} )$PSOSSAISSA
      200.2026 404.737 608.543 655.0
      200.1551 232.0479 936.028 419.0
      200.1044 505.3208 605.0136 031.0
      200.0569 697 672.0201 794.0107 685.0
      150.20114 863 733.07 285.3157 295.0
      150.154 657.364 119.829 587.2
      150.10278 149.177 738.77 540.4
      150.0562 896.245 888.79 420.6
      100.207 311.72 191.31 853.7
      100.153 000.22 744.32 120.7
      100.102 685.422 177.62 041.8
      100.051 954.38 198.51 757.9
      50.204 282.73 808.92 904.8
      50.152 572.53 250.62 544.1
      50.103 320.33 837.72 328.6
      50.052 875.83 159.84 450.7
      均值11 566 078.473 271.63 3727.0
    • Table 6. Average fitness of AUV path planning

      View table
      View in Article

      Table 6. Average fitness of AUV path planning

      不确定性参数平均适应度
      ${\sigma_{\rm{d}}}$/(°)$ \sigma_{\text{m}}/(\text{m}\cdot\text{s}^{-1}) $PSOSSAISSA
      200.200.91730.72480.7008
      200.150.90790.68970.6838
      200.100.90850.70870.6971
      200.050.81510.69880.6941
      150.200.92470.68050.6660
      150.150.81000.66550.6540
      150.100.87060.65370.6420
      150.050.81630.64820.6296
      100.200.90110.66970.6543
      100.150.85850.66190.6481
      100.100.79960.65190.6404
      100.050.78900.63490.6207
      50.200.83530.67510.6593
      50.150.80020.67780.6624
      50.100.95530.65280.6380
      50.050.83840.64610.6275
      均值0.85920.67130.6574
    • Table 7. Count analysis result of AUV path planning failure

      View table
      View in Article

      Table 7. Count analysis result of AUV path planning failure

      不确定性参数失败次数
      ${\sigma_{\text{d}}}$/(°)${\sigma _{\text{m}}}/( {{\text{m}} \cdot {{\text{s}}^{ - 1}}} )$PSOSSAISSA
      200.201 7861 1651 168
      200.151 6741 032982
      200.101 703616595
      200.051 300243146
      150.201 6331 0491 090
      150.151 726958870
      150.101 377431391
      150.051 49917696
      100.201 6141 1191 002
      100.151 742524514
      100.101 397224220
      100.051 4002500
      50.201 675530447
      50.151 532241177
      50.101 4731312
      50.051 516500
      均值1 566539482
    Tools

    Get Citation

    Copy Citation Text

    Lijun TANG, Yunxia FAN, Xingyu ZHOU, Qian SUN. AUV path planning method based on improved sparrow search algorithm[J]. Chinese Journal of Ship Research, 2025, 20(3): 275

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Weapon, Electronic and Information System

    Received: Dec. 8, 2023

    Accepted: --

    Published Online: Jul. 15, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.03679

    Topics