Metrology & Measurement Technology, Volume. 45, Issue 2, 5(2025)
Progress in atomic clocks and the redefinition of the "second"
[1] ESSEN L, PARRY J V L. An atomic standard of frequency and time interval: a caesium resontor. Nature, 176, 280-282(1955).
[3] BAUCH A, HEINDORFF T, SCHRODER R et al. The PTB primary clock Cs3: type B evaluation of its standard uncertainty. Metrologia, 33, 249-260(1996).
[4] HAFELE J C, KEATING R E. Around the world atomic clocks: observed relativistic time gains. Science, 177, 168-170(1972).
[5] ASCARRUNZ F G, DUDIN Y O, ARAMBURO M C et al. Long⁃term frequency instability of a portable cold 87Rb atomic clock, 107-110(2018).
[6] SAVORY J, ASCARRUNZ F, ASCARRUNZ L et al. A portable cold 87Rb atomic clock with frequency instability at one day in the 10-15 range, 1-3(2018).
[7] PELLE B, ARCHAMBAULT L. DESRUELLE B, 1-4(2022).
[8] YU M Y, MENG Y L, YE M F et al. Development of the integrated integrating sphere cold atom clock. Chinese Physics B, 28(2019).
[9] MENG Y L, JIANG X J, WU J et al. Staellite⁃borne atomic clock based on diffuse laser⁃cooled atoms. Frontiers in Physicals, 10(2022).
[10] CLAIRON A, SALOMON C, GUELLATI S et al. Ramsey resonance in a Zacharias fountain. Europhysics Letters, 16, 165-170(1991).
[11] CHU S, HOLLBERG L W, BJORKHOLM J E et al. Three⁃dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Physical Review Letters, 55, 48-51(1985).
[12] KASEVICH M, CHU S. Laser cooling below a photon recoil with three⁃level atoms. Physical Review Letters, 69, 1741-1744(1992).
[13] CLAIRON A, LAURENT P, SANTARELLI G et al. A cesium fountain frequency standard: preliminary results. IEEE(1995).
[16] HEAVNER T P, DONLEY E A, LEVI F et al. First accuracy evaluation of NIST⁃F2. Metrologia, 51, 174-182(2014).
[17] LEVI F, CALONICO D, CALOSSO C E et al. Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain. Metrologia, 51(2014).
[18] LI R, GIBBLE K. Evaluating and minimizing distributed cavity phase errors in atomic clocks. Metrologia, 47, 534-551(2010).
[19] LI R, GIBBLE K et al. Evaluation of doppler shifts to improve the accuracy of primary atomic fountain clocks. Physical Review Letters, 106(2011).
[20] LI R, GIBBLE K, SZYMANIEC K. Improved accuracy of the NPL⁃CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts. Metrologia, 48, 283-289(2011).
[21] PEREIRA D S F, MARION H, BIZE S et al. Controlling the cold collision shift in high precision atomic interferometry. Physical Review Letters, 89(2002).
[22] MILLO J, ABGRALL M, LOURS M et al. Ultra⁃low noise microwave generation with fiber⁃based optical frequency comb and application to atomic fountain clock. Applied Physics Letters, 94(2009).
[23] WEYERS S, LIPPHARDT B, SCHNATZ H. Reaching the quantum limit in a fountain clock using a microwave oscillator phase locked to an ultrastable laser. Physical Review A, 79(2009).
[24] KUMAGAI M, ITO H, KIDO K et al. Recent Improvements of NICT Atomic Fountains CsF1 & CsF2(2016).
[25] DAI S, FANG F, LIU K et al. The ultra⁃stable microwave based on ultra⁃stable laser with robustness and long term stability. Quantum and Nonlinear Optics V(2018).
[26] TAI Z Y, YAN L L, ZHANG Y et al. Transportable 1555⁃nm ultra⁃stable laser with sub⁃0.185⁃Hz linewidth. Chinese Physics Letters, 34(2017).
[27] LEGERE R, GIBBLE K. Quantum scattering in a juggling atomic fountain. Physical Review Letters, 81, 5780-5783(1998).
[28] DUDLE G, JOYET A, BERTHOUD P et al. First results with a cold cesium continuous fountain resonator. IEEE Transactions on Instrumentation & Measurement, 50, 510-514(2001).
[29] JEFFFFERTS S R, HEAVNER T P, DONLEY E A et al. Second generation cesium fountain primary frequency standards at NIST(2003).
[30] FERTIG C, GIBBLE K. Measurement and cancellation of the cold collision frequency shift in an 87Rb fountain clock. Physical Review Letters, 85, 1622-1625(2000).
[31] CHENG H, ZHANG Z, DENG S et al. Design and operation of a transportable 87Rb atomic fountain clock. Review Scientific Instruments, 92(2021).
[32] PEIL S, CRANE S, SWANSON T et al. The USNO rubidium fountain(2006).
[33] BLINOV I, BOIKO A, KOSHELIAEVSKII N et al. First experiments on application of Rb fountain frequency standards for TA(SU) time scale maintenance, 257-262(2018).
[34] CHEN W, FANG F, LIU K et al. Development of Rb fountain clock for time keeping. Frontiers in Physics, 10(2022).
[35] ZHANG H, RUAN J, LIU D et al. Development and preliminary operation of 87Rb continuously running atomic fountain clock at NTSC. IEEE Transactions on Instrumentation and Measurement, 71(2022).
[36] CHEN W L, LIU K, ZHENG F S et al. Engineering highly reliable Rb fountain clock with a long⁃term instability of 2.6 × 10-16. Chinese Journal of Scientific Instrument, 45, 79-85(2024).
[37] WINELAND D, EKSTROM P, DEHMELT H. Monoelectron oscillator. Physical Review Letters, 31, 1279-1282(1973).
[38] DIDDAMS S A, JONES D J, YE J et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Physical Review Letters, 84, 5102-5105(2000).
[39] DIDDAMS S A, UDEM T, BERGQUIST J C et al. An optical clock based on a single trapped 199Hg+ ion. Science, 293, 825-828(2001).
[40] CHOU C W, HUME D B, KOELEMEIJ J C J et al. Frequency comparison of two high accuracy Al+ optical clocks. Physical Review Letters, 104(2010).
[41] BREWER S M, CHEN J S, HANKIN A M et al. 27Al+ quantum⁃logic clock with a systematic uncertainty below 10-18. Physical Review Letters, 123(2019).
[42] TOFFUL A, BAYNHAM C F A, CURTIS E A et al. 171Yb+ optical clock with 2.2 × 10-18 systematic uncertainty and absolute frequency measurements. Metrologia(2024).
[43] KATORI H, TAKAMOTO M, PAL'CHIKOV V G et al. Ultrastable optical clock with neutral atoms in an engineered light shift trap. Physical Review Letters, 91(2003).
[44] ROSENBAND T, SCHMIDT P O, HUME D B et al. Observation of the 1S0 → 3P0 clock transition in 27Al+. Physical Review Letters, 98(2007).
[45] LUDLOW A D, BOYD M M, YE J et al. Optical atomic clocks. Review of Modern Physics, 87, 637-701(2014).
[46] LEMKE N D, LUDLOW A D, BARBER Z W et al. Spin⁃1 / 2 optical lattice clock. Physical Review Letters, 103(2009).
[47] PEIK E, SCHNEIDER T, TAMM C. Laser frequency stabilization to a single ion. Journal of Physics B: Atomic Molecular & Optical Physics, 39, 145-158(2006).
[48] FALKE S, SCHNATZ H, Winfred J S R V et al. The 87Sr optical frequency standard at PTB. Metrologia, 48, 399-407(2011).
[49] MARGOLIS H S, BARWOOD G P, HUANG G et al. Hertz⁃level measurement of the optical clock frequency in a single 88Sr+ ion. Science, 306, 1355-1358(2004).
[50] KING S A, GODUN R M, WEBSTER S A et al. Absolute frequency measurement of the 2S1 / 2⁃2F7 / 2 electric octupole transition in a single ion of 171Yb+ with 10-15 fractional uncertainty. New Journal of Physics, 14(2012).
[51] LE TARGAT R, LORINI L, LE COQ Y et al. Experimental realization of an optical second with strontium lattice clocks. Nature Communications, 4(2013).
[52] YI L, MEJRI S, MCFERRAN J J et al. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition. Physical Review Letters, 106(2011).
[53] TAKAMOTO M, TAKANO T, KATORI H. Frequency comparison of optical lattice clocks beyond the Dick limit. Nature Photonics, 5, 288-292(2011).
[54] PIZZOCARO M, BREGOLIN F, MILANI G et al. Ytterbium optical lattice clock at INRIM, 300-303(2015).
[55] LIN Y G, WANG Q, LI Y et al. First evaluation and frequency measurement of the strontium optical lattice clock at NIM. Chinese Physics Letters, 32(2015).
[56] HUANG Y, CAO J, LIU P et al. Hertz⁃level measurement of the 40Ca+ 4s2S1 / 2⁃3d2D5 / 2 clock transition frequency with respect to the SI second through the Global Positioning System. Physical Review A, 85(2012).
[57] LIU L H, ZOU H X, LIU Q et al. Blackbody⁃radiation shift in a 199Hg+ ion optical frequency standard. Acta Physica Sinica, 61(2012).
[58] HAN J X, LU B Q, YIN M J et al. Momentum⁃space crystal in narrow⁃line cooling of 87Sr. Chinese Physics B, 28(2019).
[59] OSKAY W H, DIDDAMS S A, DONLEY E A et al. Single⁃atom optical clock with high accuracy. Physical Review Letters, 97(2006).
[60] HINKLEY N, SHERMAN J A, PHILLIPS N B et al. An atomic clock with 10–18 instability. Science, 341, 1215-1218(2013).
[61] NICHOLSON T L, CAMPBELL S L, HUTSON R B et al. Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty. Nature Communications, 6(2015).
[62] YANG T, LU B, ZHU L et al. Sr optical lattice clock and precision optical frequency measurement at NIM. Journal of Physics: Conference Series, 2889(2023).
[63] MADEJ A A, TIBBO M et al. High⁃accuracy measurement of the differential scalar polarizability of a 88Sr+ clock using the time⁃dilation effect. Physical Review Letters, 112(2014).
[64] LEOPOLD T, KING S A, MICKE P et al. A cryogenic radio frequency ion trap for quantum logic spectroscopy of highly charged ions. Review of Scientific Instruments, 90(2019).
[65] HACHISU H, PETIT GÉRARD, NAKAGAWA F et al. SI⁃traceable measurement of an optical frequency at the low 10-16 level without a local primary standard. Optics Express, 25(2017).
[66] KOLLER S B, GROTTI J, VOGT S et al. Transportable optical lattice clock with 7 × 10-17 uncertainty. Physical Review letters, 118(2017).
[67] BILICKI S, BOOKJANS E et al. Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock. Metrologia, 53, 1123-1130(2016).
[68] MCGREW W F, ZHANG X, FASANO R J et al. Atomic clock performance enabling geodesy below the centimetre level. Nature, 564, 87-90(2018).
[69] HACHISU H, NAKAGAWA F, HANADO Y et al. Months long real time generation of a time scale based on an optical clock. Scientific Reports, 8(2018).
[70] PIZZOCARO M, BREGOLIN F, BARBIERI P et al. Absolute frequency measurement of the 1S0⁃3P0 transition of 171Yb with a link to international atomic time. Metrologia, 57(2020).
[71] LIU K, FANG F. Primary frequency standards in the microwave range. Physics, 52, 441-448(2023).
[72] SZYMANIEC K, NOH H R, PARK S E et al. Spin polarization in a freely evolving sample of cold atoms. Applied Physics B, 111, 527-535(2013).
[73] HAN L, FANG F, CHEN W L et al. Optical state selection process with optical pumping in a cesium atomic fountain clock. Chinese Physics B, 30(2021).
[74] LUDLOW A D, HUANG X, NOTCUTT M et al. Compact thermal noise limited optical cavity for diode laser stabilization at 1 × 10-15. Optics Letters, 32, 641-643(2007).
[75] DREVER R W P, HALL J L, KOWALSKI F V et al. Laser phase and frequency stabilization using an optical resonator. Applied Physics B, 31, 97-105(1983).
[76] DAY T, GUSTAFSON E K. Sub⁃hertz relative frequency stabilization of two diode laser pumped Nd∶YAG lasers locked to a fabry⁃perot interferometer. IEEE Journal of Quantum Electronics, 28, 1106-1117(1992).
[77] HAGEMANN C, GREBING C, KESSLER T et al. Providing 10-16 short term stability of a 1.5 μm laser to optical clocks. IEEE Transactions on Instrumentation and Measurement, 62, 1556-1562(2013).
[78] HFNER S, FALKE S, GREBING C et al. 8 × 10-17 fractional laser frequency instability with a long room⁃temperature cavity. Optics letters, 40, 2112-2115(2015).
[79] WINELAND D J. Frequency standards based on stored ions. Proceedings of IEEE, 74, 147-150(1986).
[80] WINELAND D J, DEHMELT H G. Principles of the stored ion calorimeter. Journal of Applied Physics, 46, 919-930(1975).
[81] PYKA K, HERSCHBACH N, KELLER J et al. A high⁃precision segmented paul trap with minimized micromotion for an optical multiple⁃ion clock. Applied Physics B, 114, 231-241(2014).
[82] LODEWYCK J, WESTERGAARD P G, LECALLIER A et al. Frequency stability of optical lattice clocks. New Journal of Physics, 12(2010).
[83] BOYD M M, ZELEVINSKY T, LUDLOW A D et al. Nuclear spin effects in optical lattice clocks. Physical Review A, 76(2007).
[84] CAMPBELL G K, BOYD M M, THOMSEN J W et al. Probing interactions between ultracold fermions. Science, 324, 360-363(2009).
[85] PORSEV S G, Derevianko A. Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks. Physical Review A, 74, 343-346(2006).
[86] BERKELAND D J, MILLER J D, BERGQUIST J C et al. Minimization of ion micromotion in a paul trap. Journal of Applied Physics, 83, 5025-5033(1998).
[87] WESTERGAARD P G, LODEWYCK J, LORINI L et al. Lattice induced frequency shifts in Sr optical lattice clocks at the 10-17 level. Physical Review Letters, 106(2011).
[88] CAO S Y, MENG F, LIN B K. Precise frequency control of an Er⁃doped fiber comb. Acta Physica Sinica, 61(2012).
[89] GREBING C, AL⁃MASOUDI A, RSCHER S D et al. Realization of a timescale with an accurate optical lattice clock. Optica, 3, 563-569(2016).
[90] HUNTEMANN N, SANNER C, LIPPHARDT B et al. Single ion atomic clock with 3 × 10-18 systematic uncertainty. Physical Review Letters, 116(2016).
[91] JÉRÔME L. On a definition of the SI second with a set of optical clock transitions. Metrologia, 56(2019).
[92] CHRISTIAN J. BORDÉ. A consistent unified framework for the new system of units: matter⁃wave optics. Comptes Rendus Physique, 20, 22-32(2019).
[93] DIMARCQ N, GERTSVOLF M, MILETI G et al. Roadmap towards the redefinition of the second. Metrology, 61(2024).
[94] DUBE P, MADEJ A A, BERNARD J E et al. A narrow linewidth and frequency⁃stable probe laser source for the 88Sr+ single ion optical frequency standard. Applied Physics, 95, 43-54(2009).
[95] HUNTEMANN N, LIPPHARDT B, TAMM C et al. Improved limit on a temporal variation of mp / me from comparisons of Yb+ and Cs atomic clocks. Physical Review Letters, 113(2014).
[96] ROSENBAND T, HUME D B, SCHMIDT P O et al. Frequency ratio of Al+ and Hg+ single ion optical olocks; metrology at the 17th decimal place. Science, 319, 1808-1812(2008).
[97] GODUN R M, NISBET⁃JONES P B R, JONES J M et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. Physical Review Letters, 113(2014).
[99] ROCHAT P, DROZ F, WANG Q H et al. Atomic clocks and timing systems in global navigation satellite systems, 25-27(2012).
[100] LI X, GE M, DAI X et al. Accuracy and reliability of multi⁃GNSS real time precise positioning: GPS, GLO⁃NASS, BeiDou, and Galileo. Journal of Geodesy, 89, 607-635(2015).
[101] DIXON T H. An introduction to the global positioning system and some geological applications. Reviews of Geophysics, 29, 249-276(1991).
[102] CERNIGLIARO A, SESIA I. Satellite clocks characterization and monitoring for global navigation satellite systems(2011).
Get Citation
Copy Citation Text
Weiliang CHEN, Kun LIU, Shaoyang DAI, Fasong ZHENG, Yani ZUO, Fang FANG. Progress in atomic clocks and the redefinition of the "second"[J]. Metrology & Measurement Technology, 2025, 45(2): 5
Category: Quantum Precision Measurement, Quantum Metrology and Quantum Sensing Technology
Received: Feb. 19, 2025
Accepted: --
Published Online: Jul. 23, 2025
The Author Email: