Chinese Journal of Lasers, Volume. 50, Issue 21, 2107112(2023)
Development of an Optical Coherence Tomography System for Mouse Retina Imaging
[1] Zhang P F, Zam A, Jian Y F et al. In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature[J]. Journal of Biomedical Optics, 20, 126005(2015).
[2] Zhang P F, Zhang T W, Song W Y et al. Review of advances in ophthalmic optical imaging technologies from several mouse retinal imaging methods[J]. Chinese Journal of Lasers, 47, 0207003(2020).
[3] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[4] Schuman J S, Hee M R, Arya A V et al. Optical coherence tomography: a new tool for glaucoma diagnosis[J]. Current Opinion in Ophthalmology, 6, 89-95(1995).
[5] Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source[J]. Optics Letters, 22, 340-342(1997).
[6] Fujimoto J G. Optical coherence tomography for ultrahigh resolution in vivo imaging[J]. Nature Biotechnology, 21, 1361-1367(2003).
[7] Huang D, Hagag A, Gao S et al. Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology[J]. Taiwan Journal of Ophthalmology, 7, 115-129(2017).
[8] Baumgartner A, Hitzenberger C K, Sattmann H et al. Signal and resolution enhancments in dual beam optical coherence tomography of the human eye[J]. Journal of Biomedical Optics, 3, 45-54(1998).
[9] Fercher A F. Optical coherence tomography[J]. Journal of Biomedical Optics, 1, 157-173(1996).
[10] Fercher A F. Optical coherence tomography-development, principles, applications[J]. Zeitschrift Für Medizinische Physik, 20, 251-276(2010).
[11] Izatt J A, Choma M A. Theory of optical coherence tomography[M]. Drexler W, Fujimoto J G. Optical coherence tomography: technology and applications, 47-72(2008).
[12] Choma M A, Sarunic M V, Yang C H et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 11, 2183-2189(2003).
[13] Rubinoff I, Soetikno B, Miller D A et al. Spectrally dependent roll-off in visible-light optical coherence tomography[J]. Optics Letters, 45, 2680-2683(2020).
[14] Lee K M, Lee E J, Kim T W et al. Comparison of the abilities of SD-OCT and SS-OCT in evaluating the thickness of the macular inner retinal layer for glaucoma diagnosis[J]. PLoS One, 11, e0147964(2016).
[15] Loureiro M M, Vianna J R, Danthurebandara V M et al. Visibility of optic nerve head structures with spectral-domain and swept-source optical coherence tomography[J]. Journal of Glaucoma, 26, 792-797(2017).
[16] Christoph M, Jan L, Sonja K et al. Systematic ultrastructural comparison of swept-source and full-depth spectral domain optical coherence tomography imaging of diabetic macular oedema[J]. The British Journal of Ophthalmology, 104, 868-873(2020).
[17] Pinilla I, Sanchez-Cano A, Insa G et al. Choroidal differences between spectral and swept-source domain technologies[J]. Current Eye Research, 46, 239-247(2021).
[18] Takusagawa H L, Hoguet A, Junk A K et al. Swept-source OCT for evaluating the lamina cribrosa: a report by the american academy of ophthalmology[J]. Ophthalmology, 126, 1315-1323(2019).
[19] Qu H, Wang Y, Lou S L et al. Speckle decorrelation optical coherence tomography using pure random phase plate[J]. Acta Optica Sinica, 43, 0111002(2023).
[20] Carrasco-Zevallos O M, Qian R B, Gahm N et al. Long working distance OCT with a compact 2f retinal scanning configuration for pediatric imaging[J]. Optics Letters, 41, 4891-4894(2016).
[21] Cho Y J, Lee D H, Kim M. Optical coherence tomography findings predictive of response to treatment in diabetic macular edema[J]. Journal of International Medical Research, 46, 4455-4464(2018).
[22] Dag Seker E, Erbahceci Timur I E. COVID-19: more than a respiratory virus, an optical coherence tomography study[J]. International Ophthalmology, 41, 3815-3824(2021).
[23] Denk N, Maloca P M, Steiner G et al. Retinal features in cynomolgus macaques (Macaca fascicularis) assessed by using scanning laser ophthalmoscopy and spectral domain optical coherence tomography[J]. Comparative Medicine, 70, 145-151(2020).
[24] Duggan E, Smith C A, Hooper M L et al. Colocalization of optical coherence tomography angiography with histology in the mouse retina[J]. Microvascular Research, 132, 104055(2020).
[25] Sakono T, Terasaki H, Sonoda S et al. Comparison of multicolor scanning laser ophthalmoscopy and optical coherence tomography angiography for detection of microaneurysms in diabetic retinopathy[J]. Scientific Reports, 11, 17017(2021).
[26] Song W Y, Zhou L B, Zhang S et al. Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina[J]. Biomedical Optics Express, 9, 3464-3480(2018).
[27] Zhang J L. Research on design method of optical system of large field of view imaging spectrometer with freeform surface[D](2022).
[28] Lan G P, Li G Q. Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography[J]. Scientific Reports, 7, 42353(2017).
[29] Rubinoff I, Miller D A, Kuranov R et al. High-speed balanced-detection visible-light optical coherence tomography in the human retina using subpixel spectrometer calibration[J]. IEEE Transactions on Medical Imaging, 41, 1724-1734(2022).
[30] Sun C W, Hu M L, Gao A H et al. Frequency-domain OCT based on the imaging spectrometer[J]. Opto-Electronic Engineering, 36, 76-81(2009).
[31] Wang Y. Study on spectral domain OCT multi-channel grating spectrometer[D](2016).
[32] Yu L. Development and application of imaging spectrometer(Invited)[J]. Infrared and Laser Engineering, 51, 20210940(2022).
[33] Zhu S Y, Wu P H, Lu Z Z et al. Fourier transform spectrometer using spectral reconstruction theory[J]. Laser & Optoelectronics Progress, 60, 0912003(2023).
[34] Song G, Steelman Z A, Finkelstein S et al. Multimodal coherent imaging of retinal biomarkers of Alzheimer’s disease in a mouse model[J]. Scientific Reports, 10, 7912(2020).
[35] Yang S Z, Liu L W, Chang Y X et al. In vivo mice brain microcirculation monitoring based on contrast-enhanced SD-OCT[J]. Journal of Innovative Optical Health Sciences, 12, 1950001(2019).
[36] Son T, Wang B Q, Thapa D et al. Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers[J]. Biomedical Optics Express, 7, 3151-3162(2016).
[37] Song W Y, Fu S P, Song S S et al. Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model[J]. Neurophotonics, 6, 041103(2019).
[38] Zhang Q X, Lu R W, Messinger J D et al. In vivo optical coherence tomography of light-driven melanosome translocation in retinal pigment epithelium[J]. Scientific Reports, 3, 2644(2013).
[39] Miao Y S, Song J, Hsu D et al. Numerical calibration method for a multiple spectrometer-based OCT system[J]. Biomedical Optics Express, 13, 1685-1701(2022).
[40] Wan M M, Liang S S, Li X Y et al. Balanced detection spectral-domain optical coherence tomography with a single line-scan camera[J]. Optics Express, 30, 2578-2584(2022).
Get Citation
Copy Citation Text
Rongyao Dong, Yanhong Ma, Tianqi Song, Mingliang Zhou, Shuai Wang, Pengfei Zhang. Development of an Optical Coherence Tomography System for Mouse Retina Imaging[J]. Chinese Journal of Lasers, 2023, 50(21): 2107112
Category: Biomedical Optical Imaging
Received: Jun. 21, 2023
Accepted: Aug. 11, 2023
Published Online: Nov. 17, 2023
The Author Email: Pengfei Zhang (pfzhang@dlut.edu.cn)