Acta Optica Sinica, Volume. 42, Issue 20, 2016001(2022)

Analysis of Inverted GaInP/GaAs/InGaAs Triple-Junction Solar Cell Failure

Yi Zhang1, Junhua Long2、*, Qiangjian Sun1, Jingjing Xuan1, Xuefei Li2, Xia Wang1, Zhitao Chen2, Xiaoxu Wu1, and Shulong Lu2、**
Author Affiliations
  • 1School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, Anhui , China
  • 2Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu , China
  • show less
    References(38)

    [1] King R R, Law D C, Edmondson K M et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells[J]. Applied Physics Letters, 90, 183516(2007).

    [2] Yan P Y, Tu J L, Aierken A et al. Electron irradiation performance of GaInP/Ga(in)as/Ge triple junction solar cell based on Bragg reflector[J]. Acta Optica Sinica, 40, 1631001(2020).

    [3] Zhang M Y, Guo Z, Sun L J et al. Preparation of large area and high performance flexible GaInP/GaAs/InGaAs tandem solar cells[J]. Journal of Infrared and Millimeter Waves, 37, 518-522(2018).

    [4] Takamoto T, Washio H, Juso H. Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic[C](2014).

    [5] Adams J, Elarde V, Hains A et al. Demonstration of multiple substrate reuses for inverted metamorphic solar cells[J]. IEEE Journal of Photovoltaics, 3, 899-903(2013).

    [6] Geisz J F, Kurtz S, Wanlass M W et al. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction[J]. Applied Physics Letters, 91, 023502(2007).

    [7] Sun X P, Xiao Z B, Du Y C. Design of broadband antireflection coating for new gallium arsenide solar cell[J]. Acta Optica Sinica, 36, 0431002(2016).

    [8] Huang X P, Long J H, Wu D Y et al. Flexible four-junction inverted metamorphic AlGaInP/AlGaAs/In0.17Ga0.83As/In0.47Ga0.53As solar cell[J]. Solar Energy Materials and Solar Cells, 208, 110398(2020).

    [9] France R M, Geisz J F, García I et al. Quadruple-junction inverted metamorphic concentrator devices[J]. IEEE Journal of Photovoltaics, 5, 432-437(2015).

    [10] Geisz J F, Steiner M A, Jain N et al. Building a six-junction inverted metamorphic concentrator solar cell[J]. IEEE Journal of Photovoltaics, 8, 626-632(2018).

    [11] Yamaguchi M, Dimroth F, Geisz J F et al. Multi-junction solar cells paving the way for super high-efficiency[J]. Journal of Applied Physics, 129, 240901(2021).

    [12] Cardwell D, Kirk A, Stender C et al. Very high specific power ELO solar cells (>3 kW/kg) for UAV, space, and portable power applications[C], 3511-3513(2017).

    [13] Takamoto T, Juso H, Ueda K et al. IMM triple-junction solar cells and modules optimized for space and terrestrial conditions[C], 3506-3510(2017).

    [14] Kawai S, Tanahashi T, Fukumoto Y et al. Causes of degradation identified by the extended thermal cycling test on commercially available crystalline silicon photovoltaic modules[J]. IEEE Journal of Photovoltaics, 7, 1511-1518(2017).

    [15] Núñez N, Vázquez M, González J R et al. Instrumentation for accelerated life tests of concentrator solar cells[J]. Review of Scientific Instruments, 82, 024703(2011).

    [16] Li J W, Shi C Y, Wang Z J et al. Theoretical simulation on degradation of GaAs sub-cells induced by proton irradiation with different energies[J]. Acta Optica Sinica, 41, 0516003(2021).

    [17] Espinet-González P, Romero R, Orlando V et al. Case study in failure analysis of accelerated life tests (ALT) on III-V commercial triple-junction concentrator solar cells[C], 1666-1671(2013).

    [18] Núñez N, González J R, Vázquez M et al. Evaluation of the reliability of high concentrator GaAs solar cells by means of temperature accelerated aging tests[J]. Progress in Photovoltaics: Research and Applications, 21, 1104-1113(2013).

    [19] Espinet-González P, Algora C, Núñez N et al. Temperature accelerated life test on commercial concentrator III-V triple-junction solar cells and reliability analysis as a function of the operating temperature[J]. Progress in Photovoltaics: Research and Applications, 23, 559-569(2015).

    [20] Vazquez M, Tamayo-Arriola J, Orlando V et al. Reliability of commercial triple junction concentrator solar cells under real climatic conditions and its influence on electricity cost[J]. Progress in Photovoltaics: Research and Applications, 25, 905-918(2017).

    [21] Sharma V, Chandel S S. Performance and degradation analysis for long term reliability of solar photovoltaic systems: a review[J]. Renewable and Sustainable Energy Reviews, 27, 753-767(2013).

    [22] Faye I, Ndiaye A, Gecke R et al. Experimental study of observed defects in mini-modules based on crystalline silicone solar cell under damp heat and thermal cycle testing[J]. Solar Energy, 191, 161-166(2019).

    [23] Makita K, Kamikawa Y, Mizuno H et al. III-V// CuxIn1-yGaySe2 multijunction solar cells with 27.2% efficiency fabricated using modified smart stack technology with Pd nanoparticle array and adhesive material[J]. Progress in Photovoltaics: Research and Applications, 29, 887-898(2021).

    [24] Sakurai K, Takano A, Yanase H et al. Japanese Task Group 8 activities in international PV module quality assurance[J]. Proceedings of SPIE, 9179, 917905(2014).

    [25] Long J H, Li X F, Sun Q J et al. Simple processing and analysis of flexible III-V multijunction solar cells using low-temperature transfer technology[J]. Solar RRL, 5, 2100066(2021).

    [26] Long J H, Xiao M, Huang X P et al. High efficiency thin film GaInP/GaAs/InGaAs inverted metamorphic (IMM) solar cells based on electroplating process[J]. Journal of Crystal Growth, 513, 38-42(2019).

    [27] Timò G, Abagnale G, Armani N et al. Novel approaches to MOVPE material deposition for high efficiency multijunction solar cells[J]. Crystal Research and Technology, 49, 606-613(2014).

    [28] Meng H F, Xu G N, Zhang J C et al. Comparison of photoelectric performance measurements for GaInP/InGaAs/Ge triple-junction space solar cells based on solar simulator and high altitude natural sunlight[J]. Acta Optica Sinica, 41, 0312004(2021).

    [29] Long J H, Sun Q J, Li X F et al. Subcells analysis of thin-film four-junction solar cells using optoelectronic reciprocity relation[J]. Solar RRL, 5, 2000542(2021).

    [30] Roensch S, Hoheisel R, Dimroth F et al. Subcell I-V characteristic analysis of GaInP/GaInAs/Ge solar cells using electroluminescence measurements[J]. Applied Physics Letters, 98, 251113(2011).

    [31] Hoheisel R, Dimroth F, Bett A W et al. Electroluminescence analysis of irradiated GaInP/GaInAs/Ge space solar cells[J]. Solar Energy Materials and Solar Cells, 108, 235-240(2013).

    [32] Ren P, Wu L Y, Wang W P et al. Change of electroluminescence spectra of solar cells caused by heating[J]. Laser & Optoelectronics Progress, 51, 121602(2014).

    [33] Khan A, Marupaduga S, Anandakrishnan S S et al. Radiation response analysis of wide-gap p-AlInGaP for superhigh-efficiency space photovoltaics[J]. Applied Physics Letters, 85, 5218-5220(2004).

    [34] Long J H, Wu D Y, Huang X P et al. Failure analysis of thin-film four-junction inverted metamorphic solar cells[J]. Progress in Photovoltaics: Research and Applications, 29, 181-187(2021).

    [35] Schultes F J, Christian T, Jones-Albertus R et al. Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP[J]. Applied Physics Letters, 103, 242106(2013).

    [36] Chmielewski D J, Lepkowski D L, Boyer J T et al. Comparative study of ~2.05 eV lattice-matched and metamorphic (Al)GaInP solar cells grown by MOCVD[J]. IEEE Journal of Photovoltaics, 8, 1601-1607(2018).

    [37] Kurtz S R, Olson J M, Friedman D J et al. Passivation of interfaces in high-efficiency photovoltaic devices[J]. MRS Proceedings, 573, 95-106(1999).

    [38] Li X Y, Zhang W, Zhang J Q et al. Study on 2.05 eV Al0.13GaInP sub-cell and its hetero-structure cells[C], 479-481(2014).

    Tools

    Get Citation

    Copy Citation Text

    Yi Zhang, Junhua Long, Qiangjian Sun, Jingjing Xuan, Xuefei Li, Xia Wang, Zhitao Chen, Xiaoxu Wu, Shulong Lu. Analysis of Inverted GaInP/GaAs/InGaAs Triple-Junction Solar Cell Failure[J]. Acta Optica Sinica, 2022, 42(20): 2016001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Mar. 28, 2022

    Accepted: Apr. 27, 2022

    Published Online: Oct. 18, 2022

    The Author Email: Long Junhua (jhlong2017@sinano.ac.cn), Lu Shulong (sllu2008@sinano.ac.cn)

    DOI:10.3788/AOS202242.2016001

    Topics