Infrared and Laser Engineering, Volume. 50, Issue 8, 20210456(2021)
Research progress of mid-infrared ultra-intense and ultrashort laser (Invited)
[1] Baer T M, Bigelow N P. 2020 visions (lasers)[J]. Nature, 463, 26-32(2010).
[2] Ke L T, Feng K, Wang W T, et al. Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma[J]. Physical Review Letters, 126, 214801(2021).
[3] Kodama R, Norreys P A, Mima K, et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition[J]. Nature, 412, 798-802(2001).
[4] Zhong J, Li Y, Wang X, et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers[J]. Nature Physics, 6, 984-987(2010).
[5] Xu T, Shen B, Xu J, et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons[J]. Physics of Plasmas, 23, 033109(2016).
[6] Popmintchev T, Chen M C, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers[J]. Science, 336, 1287-1291(2012).
[7] Armstrong J A, Bloembergen N, Ducuing J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 127, 1918-1939(1962).
[8] Dubietis A, Jonusauskas G, Piskarskas A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal[J]. Optics Communications, 88, 437-440(1992).
[9] Fan G, Balciunas T, Kanai T, et al. Hollow-core-waveguide compression of multi-millijoule CEP-stable 32 μm pulses[J]. Optica, 3, 1308-1311(2016).
[10] Lu C H, Tsou Y J, Chen H Y, et al. Generation of intense supercontinuum in condensed media[J]. Optica, 1, 400-406(2014).
[11] Ueffing M, Reiger S, Kaumanns M, et al. Nonlinear pulse compression in a gas-filled multipass cell[J]. Optics Letters, 43, 2070-2073(2018).
[12] Shumakova V, Malevich P, Alisauskas S, et al. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk[J]. Nature Communications, 7, 12877(2016).
[13] [13] Ebrahimzadeh M, Sokina I T. infrared Coherent Sources Applications[M]. [S. l.]: Springer, 2008.
[14] Dai Y F, Li Y Y, Zou X, et al. High-efficiency broadly tunable Cr: ZnSe single crystal laser pumped by Tm: YLF laser[J]. Laser Physics Letters, 10, 105816(2013).
[15] Sorokina I T. Cr2+-doped II–VI materials for lasers and nonlinear optics[J]. Optical Materials, 26, 395-412(2004).
[16] Yakovlev V S, Ivanov M, Krausz F. Enhanced phase-matching for generation of soft X-ray harmonics and attosecond pulses in atomic gases[J]. Optics Express, 15, 15351-15364(2007).
[17] Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).
[18] Soskin M S, Vasnetsov M V. Singular optics[J]. Progress in Optics, 42, 219-276(2001).
[19] Inoue R, Yonehara T, Miyamoto Y, et al. Measuring qutrit-qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon[J]. Physical Review Letters, 103, 110503(2009).
[20] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 412, 313-316(2001).
[21] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 3, 161-204(2011).
[22] Bretschneider S, Eggeling C, Hell S W. Breaking the diffraction barrier in fluorescence microscopy by optical shelving[J]. Physical Review Letters, 98, 218103(2007).
[23] Yan Y, Xie G, Lavery M P, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 5, 4876(2014).
[24] Hernandez-garcia C, Picon A, San Roman J, et al. Attosecond extreme ultraviolet vortices from high-order harmonic generation[J]. Physical Review Letters, 111, 083602(2013).
[25] Rego L, Dorney K M, Brooks N J, et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum[J]. Science, 364, eaaw9486(2019).
[26] Brida D, Manzoni C, Cirmi G, et al. Generation of broadband mid-infrared pulses from an optical parametric amplifier[J]. Optics Express, 15, 15035-15040(2007).
[27] Steinle T, Stenmann A, Hegenbarth R, et al. Watt-level optical parametric amplifier at 42 MHz tunable from 1.35 to 4.5 mum coherently seeded with solitons[J]. Optics Express, 22, 9567-9673(2014).
[28] Haakestad M W, Arisholm G, Lippert E, et al. High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2[J]. Optics Express, 16, 14263-14273(2008).
[29] Takahashi E J, Kanai T, Nabekawa Y, et al. 10mJ class femtosecond optical parametric amplifier for generating soft x-ray harmonics[J]. Applied Physics Letters, 93, 041111(2008).
[30] Thiré N, Beaulieu S, Cardin V, et al. 10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification[J]. Applied Physics Letters, 106, 091110(2015).
[31] Chen Y, Li Y Y, Li W K, et al. Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier[J]. Optics Communications, 365, 7-13(2016).
[32] Heiner Z, Petrov V, Mero M. Efficient, sub-4-cycle, 1-microm-pumped optical parametric amplifier at 10 microm based on BaGa4S7[J]. Optics Letters, 45, 5692-5695(2020).
[33] Cheng S, Chatterjee G, Tellkamp F, et al. Compact Ho: YLF-pumped ZnGeP2-based optical parametric amplifiers tunable in the molecular fingerprint regime[J]. Optics Letters, 45, 2255-2258(2020).
[34] Andriukaitis G, Balciunas T, Allisauskas S, et al. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier[J]. Optics Letters, 36, 2755-2757(2011).
[35] Mitrofanov A V, Voronin A A, Sidorov-biryukov D A, et al. Mid-infrared laser filaments in the atmosphere[J]. Scientific Reports, 5, 8368(2015).
[36] Wang P F, Li Y Y, Li W K, et al. 2.6 mJ/100 Hz CEP-stable near-single-cycle 4 mum laser based on OPCPA and hollow-core fiber compression[J]. Optics Letters, 43, 2197-2200(2018).
[37] Wang P F, Shao B J, Su H P, et al. High-repetition-rate, high-peak-power 1450 nm laser source based on optical parametric chirped pulse amplification[J]. High Power Laser Science and Engineering, 7, e32(2019).
[38] Ma J, Wang J, Yuan P, et al. Quasi-parametric amplification of chirped pulses based on a Sm3+-doped yttrium calcium oxyborate crystal[J]. Optica, 2, 1006-1009(2015).
[39] Wand F, Xie G, Yuan P, et al. Theoretical design of 100-terawatt-level mid-infrared laser[J]. Laser Physics Letters, 12, 075402(2015).
[40] Zhang Q, Takahashi E J, Mucke O D, et al. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses[J]. Optics Express, 19, 7190-7212(2011).
[41] Fu Y, Midorikawa K, Takahashi E J. Towards a petawatt-class few-cycle infrared laser system via dual-chirped optical parametric amplification[J]. Scientific Reports, 8, 7692(2018).
[42] Fu Y, Xue B, Midorikawa K, et al. TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification[J]. Applied Physics Letters, 112, 241105(2018).
[43] Schmidt B E, Thire N, Boivin M, et al. Frequency domain optical parametric amplification[J]. Nature Communications, 5, 3643(2014).
[44] Gruson V, Ernotte G, Lassonde P, et al. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification[J]. Optics Express, 25, 27706-27014(2017).
[45] Schmidt B E, Béjot P, Giguère M, et al. Compression of 1.8 μm laser pulses to sub two optical cycles with bulk material[J]. Applied Physics Letters, 96, 121109(2010).
[46] Lavenu L, Natile M, Guichard F, et al. Nonlinear pulse compression based on a gas-filled multipass cell[J]. Optics Letters, 43, 2252-2255(2018).
[47] Shumakova V, Alisauskas S, Malevich P, et al. Chirp-controlled filamentation and formation of light bullets in the mid-IR[J]. Optics Letters, 44, 2173-2176(2019).
[48] Mitrofanov A V, Voronin A A, Sidorov-Biryukov D A, et al. Subterawatt few-cycle mid-infrared pulses from a single filament[J]. Optica, 3, 299-302(2016).
[49] Qian J, Wang P, Peng Y, et al. Pulse combination and compression in hollow-core fiber for few-cycle intense mid-infrared laser generation[J]. Photonics Research, 9, 477-483(2021).
[50] Shao B, Li Y, Peng Y, et al. 1.9 μm few-cycle pulses based on multi-thin-plate spectral broadening and nonlinear self-compression[J]. IEEE Photonics Journal, 13, 1-8(2021).
[51] Von Grafenstein L, Bock M, Ueberschaer D, et al. Multi-millijoule, few-cycle 5 microm OPCPA at 1 kHz repetition rate[J]. Optics Letters, 45, 5998-6001(2020).
[52] Pupeikis J, Chevreuil P A, Bigler N, et al. Water window soft X-ray source enabled by a 25 W few-cycle 22 µm OPCPA at 100 kHz[J]. Optica, 7, 168-171(2020).
[53] Cardin V, Thiré N, Beaulieu S, et al. 0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression[J]. Applied Physics Letters, 107, 181101(2015).
[54] Gauthier D, Ribic P R, Adhikary G, et al. Tunable orbital angular momentum in high-harmonic generation[J]. Nature Communications, 8, 14971(2017).
[55] Miyamoto K, Miyagi S, Yamada M, et al. Optical vortex pumped mid-infrared optical parametric oscillator[J]. Optics Express, 19, 12220-12226(2011).
[56] Yamane K, Toda Y, Morita R. Ultrashort optical-vortex pulse generation in few-cycle regime[J]. Optics Express, 20, 18986-18993(2012).
[57] Qian J, Peng Y, Li Y, et al. Femtosecond mid-IR optical vortex laser based on optical parametric chirped pulse amplification[J]. Photonics Research, 8, 421-425(2020).
[58] Zhong H, Liang C, Dai S, et al. Polarization-insensitive, high-gain parametric amplification of radially polarized femtosecond pulses[J]. Optica, 8, 62-69(2021).
Get Citation
Copy Citation Text
Junyu Qian, Yujie Peng, Yanyan Li, Wenkai Li, Renyu Feng, Liya Shen, Yuxin Leng. Research progress of mid-infrared ultra-intense and ultrashort laser (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210456
Category: Special issue—ultrafast and ultraintense mid-infrared laser technology
Received: Jul. 6, 2021
Accepted: --
Published Online: Nov. 2, 2021
The Author Email: Yujie Peng (yjpeng@siom.ac.cn)