Acta Optica Sinica, Volume. 43, Issue 21, 2120001(2023)

Inverse Reflectance Model Based on Deep Learning

Xi Wang, Zhenxiong Jian, and Mingjun Ren*
Author Affiliations
  • State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    References(38)

    [1] Zhu K, Huo Y W, Wu T H et al. Principle and method for in-situ measurement of micro-scale worn surface morphology based on 3D reconstruction with photometric stereo vision algorithm[J]. Journal of Mechanical Engineering, 57, 1-9(2021).

    [2] Liu R X, Li L Q, Wang J et al. The evaluation of fabric pleat grade based on photometric stereo[J]. Journal of Donghua University (Natural Science), 39, 48-52, 59(2013).

    [3] Hong H B, Wan S B, Shen Y P et al. Photometric and surface structure light composite sensing based robot in-situ measurement method for large aerospace component[J]. Aerospacec Manufacturing Technology, 5, 18-21(2022).

    [4] Woodham R J. Photometric method for determining surface orientation from multiple images[J]. Optical Engineering, 19, 139-144(1980).

    [5] Hayakawa H. Photometric stereo under a light source with arbitrary motion[J]. Journal of the Optical Society of America A, 11, 3079-3089(1994).

    [6] Kolagani N, Fox J S, Blidberg D R. Photometric stereo using point light sources[C], 1759-1764(2002).

    [7] Shi B X, Mo Z P, Wu Z et al. A benchmark dataset and evaluation for non-lambertian and uncalibrated photometric stereo[J]. IEEE Transactions on Pattern Analysis, 41, 271-284(2019).

    [8] Ikehata S, Wipf D, Matsushita Y et al. Photometric stereo using sparse Bayesian regression for general diffuse surfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 1816-1831(2014).

    [9] Wu L, Ganesh A, Shi B X et al. Robust photometric stereo via low-rank matrix completion and recovery[M]. Kimmel R, Klette R, Sugimoto A. Computer vision–ACCV 2010, 6494, 703-717(2011).

    [10] Wu T P, Tang C K. Photometric stereo via expectation maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 546-560(2010).

    [11] Goldman D B, Curless B, Hertzmann A et al. Shape and spatially-varying BRDFs from photometric stereo[J]. IEEE Transactions on Pattern Analysis, 32, 1060-1071(2009).

    [12] Shi B X, Tan P, Matsushita Y et al. Bi-polynomial modeling of low-frequency reflectances[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 1078-1091(2014).

    [13] Chung H S, Jia J Y. Efficient photometric stereo on glossy surfaces with wide specular lobes[C](2008).

    [14] Shen H L, Han T Q, Li C G. Efficient photometric stereo using kernel regression[J]. IEEE Transactions on Image Processing, 26, 439-451(2017).

    [15] Higo T, Matsushita Y, Ikeuchi K. Consensus photometric stereo[C], 1157-1164(2010).

    [16] Shi B X, Tan P, Matsushita Y et al. Elevation angle from reflectance monotonicity: photometric stereo for general isotropic reflectances[M]. Fitzgibbon A, Lazebnik S, Perona P, et al. Computer vision–ECCV 2012, 7574, 455-468(2012).

    [17] Hertzmann A, Seitz S M. Example-based photometric stereo: shape reconstruction with general, varying BRDFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1254-1264(2005).

    [18] Hui Z, Sankaranarayanan A C. Shape and spatially-varying reflectance estimation from virtual exemplars[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2060-2073(2017).

    [19] Chen G Y, Han K, Shi B X et al. Deep photometric stereo for non-lambertian surfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 129-142(2022).

    [20] Ikehata S. CNN-PS: CNN-based photometric stereo for general non-convex surfaces[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision–ECCV 2018, 11219, 3-19(2018).

    [21] Matusik W, Pfister H, Brand M et al. A data-driven reflectance model[J]. ACM Transactions on Graphics, 22, 759-769(2003).

    [22] Enomoto K, Waechter M, Okura F et al. Discrete search photometric stereo for fast and accurate shape estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 4355-4367(2023).

    [23] Santo H, Samejima M, Sugano Y et al. Deep photometric stereo network[C], 501-509(2018).

    [24] Santo H, Samejima M, Sugano Y et al. Deep photometric stereo networks for determining surface normal and reflectances[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 114-128(2020).

    [25] Li J X, Robles-Kelly A, You S D et al. Learning to minify photometric stereo[C], 7560-7568(2020).

    [26] Zheng Q, Jia Y M, Shi B X et al. SPLINE-net: sparse photometric stereo through lighting interpolation and normal estimation networks[C], 8548-8557(2020).

    [27] Ikehata S. PS-transformer: learning sparse photometric stereo network using self-attention mechanism[C](2021).

    [28] Logothetis F, Budvytis I, Mecca R et al. PX-NET: simple and efficient pixel-wise training of photometric stereo networks[C], 12737-12746(2022).

    [29] Liu H Y, Yan Y H, Song K C et al. SPS-net: self-attention photometric stereo network[J]. IEEE Transactions on Instrumentation and Measurement, 70, 5006213(2021).

    [30] Ju Y K, Jian M W, Guo S X et al. Incorporating lambertian priors into surface normals measurement[J]. IEEE Transactions on Instrumentation and Measurement, 70, 5012913(2021).

    [31] Ju Y K, Dong J Y, Chen S. Recovering surface normal and arbitrary images: a dual regression network for photometric stereo[J]. IEEE Transactions on Image Processing, 30, 3676-3690(2021).

    [32] Ikehata S, Aizawa K. Photometric stereo using constrained bivariate regression for general isotropic surfaces[C], 2187-2194(2014).

    [33] Wang X, Jian Z X, Ren M J. Non-lambertian photometric stereo network based on inverse reflectance model with collocated light[J]. IEEE Transactions on Image Processing, 29, 6032-6042(2020).

    [34] Cheng Y. High quality surface reconstruction using photometric stereo[D](2013).

    [35] Argyriou V, Petrou M. Recursive photometric stereo when multiple shadows and highlights are present[C](2008).

    [36] Chandraker M, Ramamoorthi R. What an image reveals about material reflectance[C], 1076-1083(2012).

    [38] Johnson M K, Adelson E H. Shape estimation in natural illumination[C], 2553-2560(2011).

    [40] Chen G Y, Han K, Wong K Y K. PS-FCN: a flexible learning framework for photometric stereo[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision–ECCV 2018, 11213, 3-19(2018).

    Tools

    Get Citation

    Copy Citation Text

    Xi Wang, Zhenxiong Jian, Mingjun Ren. Inverse Reflectance Model Based on Deep Learning[J]. Acta Optica Sinica, 2023, 43(21): 2120001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics in Computing

    Received: Mar. 2, 2023

    Accepted: Jun. 13, 2023

    Published Online: Nov. 16, 2023

    The Author Email: Ren Mingjun (renmj@sjtu.edu.cn)

    DOI:10.3788/AOS230615

    Topics