Acta Optica Sinica, Volume. 43, Issue 21, 2120001(2023)

Inverse Reflectance Model Based on Deep Learning

Xi Wang, Zhenxiong Jian, and Mingjun Ren*
Author Affiliations
  • State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    Figures & Tables(14)
    Inverse reflectance model based on deep learning
    Represented images of synthetic testing dataset
    Represented images of proposed supplementary training dataset
    Qualitative results of synthetic experiment
    Experiment results on sparse light scene
    Qualitative experiment results of every stage subnetwork
    Qualitative results of real experiments
    • Table 1. Hyper-parameter settings of different training stages

      View table

      Table 1. Hyper-parameter settings of different training stages

      Hyper-parameter settingStage 1Stage 2Stage 3Combine
      Initial learning rate0.00010.00010.00110-6
      Total epoch4040405
      Batch size32323216
      Learning rate decay epoch263626362636-
      Noise level[-0.005,0.005][-0.005,0.005][-0.005,0.005][-0.01,0.01]
    • Table 2. Ablation experiment results

      View table

      Table 2. Ablation experiment results

      MaxpoolingStage 1MAVE
      ΔφnTl
      ××0.1010.064
      ×0.0300.040
      -0.033
    • Table 3. MAE measured on dense light scene

      View table

      Table 3. MAE measured on dense light scene

      MethodMAE /(°)Average MAE /(°)
      ArmadilloBunnyDragonSphere
      Ours2.31.92.22.32.2
      WJ20333.22.63.12.82.9
      IK18205.14.15.63.64.6
      CH20195.74.25.43.94.8
    • Table 4. MAE measured on SVBRDF scene

      View table

      Table 4. MAE measured on SVBRDF scene

      MethodMAE /(°)Average MAE /(°)
      ArmadilloBunnyDragonSphere
      Ours2.61.92.61.82.2
      WJ20333.42.53.52.63.0
      IK18205.13.85.83.64.6
      CH20195.94.05.63.94.9
    • Table 5. Experiment results of every stage subnetwork

      View table

      Table 5. Experiment results of every stage subnetwork

      ObjectBallBearBudd.CatCowGobl.Harv.Pot1Pot2Read.Aver.
      MAVE in stage 10.0110.0200.0230.0200.0250.0220.0460.0200.0220.0300.024
      MAE in stage 2 /(°)1.74.26.74.15.57.212.85.26.010.36.37
      MAE in stage 3 /(°)2.04.06.34.05.06.611.74.95.89.96.02
      MAE of combine /(°)2.03.66.33.95.16.511.65.05.29.85.90
    • Table 6. Comparison results of normal vector on DiLiGenT dataset using all the images

      View table

      Table 6. Comparison results of normal vector on DiLiGenT dataset using all the images

      MethodNormal vector estimation error /(°)Average error /(°)
      BallBearBudd.CatCowGobl.Harv.Pot1Pot2Read.
      Ours2.03.66.33.95.16.511.65.05.29.85.90
      FI21282.03.57.64.34.76.713.34.95.09.86.17
      WJ20331.64.66.94.75.27.813.05.66.610.26.62
      IK18202.24.17.94.68.07.314.05.46.012.67.21
      CH20402.44.67.54.88.08.913.95.76.710.57.30
    • Table 7. Comparison results of normal vector on DiLiGenT using 10 images

      View table

      Table 7. Comparison results of normal vector on DiLiGenT using 10 images

      MethodNormal vector estimation error /(°)Average error /(°)
      BallBearBudd.CatCowGobl.Harv.Pot1Pot2Read.
      Ours2.14.37.25.26.28.313.86.16.710.77.06
      WJ20332.35.97.95.97.28.915.56.78.211.37.98
      CH20192.95.98.75.49.110.615.66.58.310.68.36
      FI21282.54.99.46.37.29.716.17.07.713.18.37
    Tools

    Get Citation

    Copy Citation Text

    Xi Wang, Zhenxiong Jian, Mingjun Ren. Inverse Reflectance Model Based on Deep Learning[J]. Acta Optica Sinica, 2023, 43(21): 2120001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics in Computing

    Received: Mar. 2, 2023

    Accepted: Jun. 13, 2023

    Published Online: Nov. 16, 2023

    The Author Email: Ren Mingjun (renmj@sjtu.edu.cn)

    DOI:10.3788/AOS230615

    Topics