Acta Optica Sinica, Volume. 40, Issue 3, 0310001(2020)
Semantic Segmentation of Remote Sensing Image Based on Encoder-Decoder Convolutional Neural Network
[1] Wu Z C, Hu Z W, Zhang Q et al. On combining spectral, textural and shape features for remote sensing image segmentation[J]. Acta Geodaetica et Cartographica Sinica, 42, 44-50(2013).
[2] Xu Y Y, Hu S, Wang B Y. Present status of unmanned aerial vehicles remote sensing for forest resources monitoring in China[J]. Forestry and Environmental Science, 33, 97-101(2017).
[3] Rao Y H, Wu L X, Zou Z L et al[J]. A preliminary study on rural land use and remote sensing dynamic monitoring technology Bulletin of Agricultural Science and Technology, 2008, 56-57.
[4] Guo X Y, He D J. Application of artificial neural networks in village land use classification[J]. Journal of Agricultural Mechanization Research, 33, 190-194(2011).
[6] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651(2017).
[7] Fu G, Liu C J, Zhou R et al. Classification for high resolution remote sensing imagery using a fully convolutional network[J]. Remote Sensing, 9, 498(2017).
[8] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).
[9] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. ∥Navab N, Hornegger J, Wells W, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science. Cham: Springer, 9351, 234-241(2015).
[10] Wang H S, Li Y S, Xie J L. Rural house extraction based on an improved seeded region growing[J]. Geomatics & Spatial Information Technology, 40, 40-42, 47(2017).
[12] Kampffmeyer M, Salberg A B, Jenssen R. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 26-July 1, 2016, Las Vegas, NV, USA. New York: IEEE, 680-688(2016).
[13] Hu Y, Zhang X C, Ma Z Z et al. Rural residential area extraction from UAV remote sensing imagery[J]. Remote Sensing for Land & Resources, 28, 96-101(2016).
[14] Yang J Y, Zhou Z X, Du Z R et al. Rural construction land extraction from high spatial resolution remote sensing image based on SegNet semantic segmentation model[J]. Transactions of the Chinese Society of Agricultural Engineering, 35, 251-258(2019).
[15] Kaiser P, Wegner J D, Lucchi A et al. Learning aerial image segmentation from online maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 6054-6068(2017).
[19] Kaoudi Z. Quiané-Ruiz J A, Thirumuruganathan S, et al. A cost-based optimizer for gradient descent optimization. [C]∥Proceedings of the 2017 ACM International Conference on Management of Data, May 14-19, 2017, Chicago, Illinois, USA. New York: ACM, 977-992(2017).
Get Citation
Copy Citation Text
Zhehan Zhang, Wei Fang, Lili Du, Yanli Qiao, Dongying Zhang, Guoshen Ding. Semantic Segmentation of Remote Sensing Image Based on Encoder-Decoder Convolutional Neural Network[J]. Acta Optica Sinica, 2020, 40(3): 0310001
Category: Image Processing
Received: Sep. 25, 2019
Accepted: Oct. 21, 2019
Published Online: Feb. 10, 2020
The Author Email: Fang Wei (fwei@aiofm.ac.cn)