Acta Optica Sinica, Volume. 40, Issue 3, 0310001(2020)
Semantic Segmentation of Remote Sensing Image Based on Encoder-Decoder Convolutional Neural Network
Fig. 2. Remote sensing image semantic segmentation network structure of SegProNet
Fig. 4. Display of data sets. (a) Training set image; (b) corresponding label visualization image
Fig. 6. Comparison of experimental results. (a) Original image; (b) original label visualization result; (c) U-Net segmentation result; (d) SegNet segmentation result; (e) segmentation result of SegProNet+ReLU; (f) segmentation result of SegProNet+ELU
Fig. 7. Comparison of experimental details. (a) Original label visualization result; (b) U-Net segmentation result; (c) SegNet segmentation result; (d) segmentation result of SegProNet+ReLU; (e) segmentation result of SegProNet+ELU
Fig. 8. Each network loss and accuracy curves. (a) U-Net; (b) SegNet; (c) SegProNet; (d) SegProNet+ELU
|
|
|
Get Citation
Copy Citation Text
Zhehan Zhang, Wei Fang, Lili Du, Yanli Qiao, Dongying Zhang, Guoshen Ding. Semantic Segmentation of Remote Sensing Image Based on Encoder-Decoder Convolutional Neural Network[J]. Acta Optica Sinica, 2020, 40(3): 0310001
Category: Image Processing
Received: Sep. 25, 2019
Accepted: Oct. 21, 2019
Published Online: Feb. 10, 2020
The Author Email: Fang Wei (fwei@aiofm.ac.cn)