Chinese Journal of Lasers, Volume. 47, Issue 2, 207016(2020)
Biomedical Photoacoustic Microscopy: Advances in Technology and Applications
[1] Wang L V, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 13, 627-638(2016).
[2] Tian C, Qian W, Shao X et al. Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells[J]. Advanced Science, 3, 1600237(2016).
[3] Köker T, Tang N, Tian C et al. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds[J]. Nature Communications, 9, 607(2018).
[4] Tian C, Zhang W, Mordovanakis A et al. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography[J]. Optics Express, 25, 15947-15955(2017).
[5] Tian C, Zhang W, Nguyen V P et al[J]. Novel photoacoustic microscopy and optical coherence tomography dual-modality chorioretinal imaging in living rabbit eyes Journal of Visualized Experiments, 2018, e57135.
[6] Yao J J, Wang L V. Photoacoustic microscopy[J]. Laser & Photonics Reviews, 7, 758-778(2013).
[7] Tam A C. Applications of photoacoustic sensing techniques[J]. Reviews of Modern Physics, 58, 381-431(1986).
[8] Manohar S, Razansky D. Photoacoustics: a historical review[J]. Advances in Optics and Photonics, 8, 586-617(2016).
[9] Oraevsky A A, Jacques S L, Frank K. Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves[J]. Proceedings of SPIE, 1882, 86-101(1993).
[10] Kruger R A, Liu P Y. Photoacoustic ultrasound: pulse production and detection in 0.5% liposyn[J]. Medical Physics, 21, 1179-1184(1994).
[11] Wang L V, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 335, 1458-1462(2012).
[12] Jo J, Tian C, Xu G et al. Photoacoustic tomography for human musculoskeletal imaging and inflammatory arthritis detection[J]. Photoacoustics, 12, 82-89(2018).
[13] Liu S D, Wang H, Zhang C X et al. 2019-11-24]. https:∥ieeexplore.ieee.org/abstract/document/8902046.(2019).
[14] Tian C, Pei M, Shen K et al. Impact of system factors on the performance of photoacoustic tomography scanners[J]. Physical Review Applied, 13, 014001(2020).
[15] Wang H, Liu S D, Wang T et al. Three-dimensional interventional photoacoustic imaging for biopsy needle guidance with a linear array transducer[J]. Journal of Biophotonics, e201900212(2019).
[16] Tian C, Xie Z X, Fabiilli M L et al. Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver[J]. Optics Letters, 40, 2253-2256(2015).
[17] Hu S, Maslov K, Wang L V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed[J]. Optics Letters, 36, 1134-1136(2011).
[18] Liu Y, Zhang C, Wang L V. Effects of light scattering on optical-resolution photoacoustic microscopy[J]. Journal of Biomedical Optics, 17, 126014(2012).
[19] Zhang H F, Maslov K, Stoica G et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nature Biotechnology, 24, 848-851(2006).
[20] Zhang C, Maslov K, Yao J J et al. In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer[J]. Journal of Biomedical Optics, 17, 116016(2012).
[21] Zhang C, Maslov K, Wang L V. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo[J]. Optics Letters, 35, 3195-3197(2010).
[22] Zhang C, Maslov K, Hu S et al. Reflection-mode submicron-resolution in vivo photoacoustic microscopy[J]. Journal of Biomedical Optics, 17, 020501(2012).
[24] Chen J H, Lin R Q, Wang H N et al. Blind-deconvolution optical-resolution photoacoustic microscopy in vivo[J]. Optics Express, 21, 7316-7327(2013).
[25] Yao J J, Wang L D, Li C Y et al. Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging[J]. Physical Review Letters, 112, 014302(2014).
[26] Danielli A, Maslov K, Garcia-Uribe A et al. Label-free photoacoustic nanoscopy[J]. Journal of Biomedical Optics, 19, 086006(2014).
[27] Lee S Y, Lai Y H, Huang K C et al. In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates[J]. Scientific Reports, 5, 15421(2015).
[28] Murray T W, Haltmeier M, Berer T et al. Super-resolution photoacoustic microscopy using blind structured illumination[J]. Optica, 4, 17-22(2017).
[30] Kim K H, Luo W, Zhang C et al. Air-coupled ultrasound detection using capillary-based optical ring resonators[J]. Scientific Reports, 7, 109(2017).
[31] Xie Z X, Chen S L, Ling T et al. Pure optical photoacoustic microscopy[J]. Optics Express, 19, 9027-9034(2011).
[32] Shelton R L, Applegate B E. Ultrahigh resolution photoacoustic microscopy via transient absorption[J]. Biomedical Optics Express, 1, 676-686(2010).
[36] Vienneau E, Liu W, Yao J J. Dual-view acoustic-resolution photoacoustic microscopy with enhanced resolution isotropy[J]. Optics Letters, 43, 4413-4416(2018).
[37] Wang T X, Sun N D, Chen R M et al. Isotropic-resolution photoacoustic microscopy with multi-angle illumination[J]. Optics Letters, 44, 1-4(2019).
[38] Wang L D, Zhang C, Wang L V. Grueneisen relaxation photoacoustic microscopy[J]. Physical Review Letters, 113, 174301(2014).
[39] Tay J W, Lai P X, Suzuki Y et al. Ultrasonically encoded wavefront shaping for focusing into random media[J]. Scientific Reports, 4, 3918(2015).
[40] Kong F T, Silverman R H, Liu L P et al. Photoacoustic-guided convergence of light through optically diffusive media[J]. Optics Letters, 36, 2053-2055(2011).
[41] Lai P X, Wang L D, Tay J W et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 9, 126-132(2015).
[42] Yao J J, Maslov K I, Puckett E R et al. Double-illumination photoacoustic microscopy[J]. Optics Letters, 37, 659-661(2012).
[45] Yang X Q, Jiang B W, Song X L et al. Fast axial-scanning photoacoustic microscopy using tunable acoustic gradient lens[J]. Optics Express, 25, 7349-7357(2017).
[46] Yang X Q, Song X L, Jiang B W et al. Multifocus optical-resolution photoacoustic microscope using ultrafast axial scanning of single laser pulse[J]. Optics Express, 25, 28192-28200(2017).
[47] Durnin J, Miceli J J, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 58, 1499-1501(1987).
[48] Shi J H, Wang L D, Noordam C et al. Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field[J]. Journal of Biomedical Optics, 20, 116002(2015).
[49] Jiang B W, Yang X Q, Luo Q M. Reflection-mode Bessel-beam photoacoustic microscopy for in vivo imaging of cerebral capillaries[J]. Optics Express, 24, 20167-20176(2016).
[50] Park B, Lee H, Jeon S et al. Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo[J]. Journal of Biophotonics, 12, e201800215(2019).
[51] Yang J M, Gong L, Xu X et al. Motionless volumetric photoacoustic microscopy with spatially invariant resolution[J]. Nature Communications, 8, 780(2017).
[52] Yao J J, Wang L D, Yang J M et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action[J]. Nature Methods, 12, 407-410(2015).
[54] Cao R, Li J, Ning B et al. Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain[J]. NeuroImage, 150, 77-87(2017).
[55] Li G, Maslov K I, Wang L V. Reflection-mode multifocal optical-resolution photoacoustic microscopy[J]. Journal of Biomedical Optics, 18, 030501(2013).
[56] Maslov K, Zhang H F, Hu S et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 33, 929-931(2008).
[57] Qi W Z, Jin T, Rong J et al. Inverted multiscale optical resolution photoacoustic microscopy[J]. Journal of Biophotonics, 10, 1580-1585(2017).
[58] Wang L D, Maslov K, Yao J J et al. Fast voice-coil scanning optical-resolution photoacoustic microscopy[J]. Optics Letters, 36, 139-141(2011).
[59] Yao J J, Wang L D, Yang J M et al. Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror[J]. Journal of Biomedical Optics, 17, 080505(2012).
[60] Kim J Y, Lee C, Park K et al. Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner[J]. Scientific Reports, 5, 7932(2015).
[61] Lin L, Zhang P F, Xu S et al. Handheld optical-resolution photoacoustic microscopy[J]. Journal of Biomedical Optics, 22, 041002(2017).
[62] Park K, Kim J Y, Lee C et al. Handheld photoacoustic microscopy probe[J]. Scientific Reports, 7, 13359(2017).
[63] Chen Q, Guo H, Jin T et al. Ultracompact high-resolution photoacoustic microscopy[J]. Optics Letters, 43, 1615-1618(2018).
[64] Rao B, Maslov K, Danielli A et al. Real-time four-dimensional optical-resolution photoacoustic microscopy with Au nanoparticle-assisted subdiffraction-limit resolution[J]. Optics Letters, 36, 1137-1139(2011).
[65] Xie Z X, Jiao S L, Zhang H F et al. Laser-scanning optical-resolution photoacoustic microscopy[J]. Optics Letters, 34, 1771-1773(2009).
[66] Jin T, Guo H, Jiang H B et al. Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging[J]. Optics Letters, 42, 4434-4437(2017).
[67] Qin W, Jin T, Guo H et al. Large-field-of-view optical resolution photoacoustic microscopy[J]. Optics Express, 26, 4271-4278(2018).
[68] Kim J Y, Lee C, Park K et al. High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid[J]. Scientific Reports, 6, 34803(2016).
[69] Song L, Maslov K, Wang L V. Multifocal optical-resolution photoacoustic microscopy in vivo[J]. Optics Letters, 36, 1236-1238(2011).
[70] Lan B X, Liu W, Wang Y C et al. High-speed widefield photoacoustic microscopy of small-animal hemodynamics[J]. Biomedical Optics Express, 9, 4689-4701(2018).
[71] Guggenheim J A, Li J, Allen T J et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing[J]. Nature Photonics, 11, 714-719(2017).
[72] Jathoul A P, Laufer J, Ogunlade O et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter[J]. Nature Photonics, 9, 239-246(2015).
[73] Chen Z, Yang S, Xing D. Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging[J]. Optics Letters, 41, 1636-1639(2016).
[74] Chen Z J, Yang S H, Wang Y et al. All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector[J]. Optics Letters, 40, 2838-2841(2015).
[76] Wissmeyer G, Soliman D, Shnaiderman R et al. All-optical optoacoustic microscope based on wideband pulse interferometry[J]. Optics Letters, 41, 1953-1956(2016).
[77] Shnaiderman R, Wissmeyer G, Seeger M et al. Fiber interferometer for hybrid optical and optoacoustic intravital microscopy[J]. Optica, 4, 1180-1187(2017).
[78] Wang T X, Cao R, Ning B et al. All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound[J]. Applied Physics Letters, 107, 153702(2015).
[79] Zhu X Y, Huang Z Y, Wang G H et al. Ultrasonic detection based on polarization-dependent optical reflection[J]. Optics Letters, 42, 439-441(2017).
[80] Yang F, Song W, Zhang C L et al. Broadband graphene-based photoacoustic microscopy with high sensitivity[J]. Nanoscale, 10, 8606-8614(2018).
[81] Song W, Peng L L, Guo G D et al. Isometrically resolved photoacoustic microscopy based on broadband surface plasmon resonance ultrasound sensing[J]. ACS Applied Materials & Interfaces, 11, 27378-27385(2019).
[82] Xing F, Liu Z B, Deng Z C et al. Sensitivereal-time monitoring of refractive indexes using a novel graphene-based optical sensor[J]. Scientific Reports, 2, 908(2012).
[84] de la Zerda A, Paulus Y M, Teed R et al. Photoacoustic ocular imaging[J]. Optics Letters, 35, 270-272(2010).
[85] Jiao S L, Jiang M S, Hu J M et al. Photoacoustic ophthalmoscopy for in vivo retinal imaging[J]. Optics Express, 18, 3967-3972(2010).
[86] Hu S, Rao B, Maslov K et al. Label-free photoacoustic ophthalmic angiography[J]. Optics Letters, 35, 1-3(2010).
[87] Silverman R H, Kong F T, Chen Y C et al. High-resolution photoacoustic imaging of ocular tissues[J]. Ultrasound in Medicine & Biology, 36, 733-742(2010).
[89] Liu T, Wei Q, Song W et al. Near-infrared light photoacoustic ophthalmoscopy[J]. Biomedical Optics Express, 3, 792-799(2012).
[90] Song W, Wei Q, Liu W Z et al. A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography[J]. Scientific Reports, 4, 6525(2015).
[91] Hennen S N, Xing W X, Shui Y B et al. Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits[J]. Experimental Eye Research, 138, 153-158(2015).
[92] Zhao Y H, Chen Z P, Saxer C et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity[J]. Optics Letters, 25, 114-116(2000).
[93] Dai C X, Liu X J, Zhang H F et al. Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography[J]. Investigative Opthalmology & Visual Science, 54, 7998-8003(2013).
[94] Li L, Dai C, Li Q et al. Fast subcellular optical coherence photoacoustic microscopy for pigment cell imaging[J]. Optics Letters, 40, 4448-4451(2015).
[95] Chen H Y, Chen X J, Qiu Z Q et al. Quantitative analysis of retinal layers' optical intensities on 3D optical coherence tomography for central retinal artery occlusion[J]. Scientific Reports, 5, 9269(2015).
[96] Chen B Y, Gao E T, Chen H Y et al. Profile and determinants of retinal optical intensity in normal eyes with spectral domain optical coherence tomography[J]. PLoS One, 11, e0148183(2016).
[97] Song W, Wei Q, Liu T et al. Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform[J]. Journal of Biomedical Optics, 17, 061206(2012).
[98] Song W, Wei Q, Feng L et al. Multimodal photoacoustic ophthalmoscopy in mouse[J]. Journal of Biophotonics, 6, 505-512(2013).
[99] Liu W, Zhang H F. Noninvasive in vivo imaging of oxygen metabolic rate in the retina. [C]∥2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, August 26-30, 2014, Chicago, IL, USA. New York: IEEE, 3865-3868(2014).
[100] Nguyen V P, Li Y X, Zhang W et al. Multi-wavelength, en-face photoacoustic microscopy and optical coherence tomography imaging for early and selective detection of laser induced retinal vein occlusion[J]. Biomedical Optics Express, 9, 5915-5938(2018).
[101] Zhang W, Li Y X, Nguyen V P et al. High-resolution, in vivo multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy imaging of rabbit retinal neovascularization[J]. Light: Science & Applications, 7, 103(2018).
[102] Li Y X, Zhang W, Nguyen V P et al. Real-time OCT guidance and multimodal imaging monitoring of subretinal injection induced choroidal neovascularization in rabbit eyes[J]. Experimental Eye Research, 186, 107714(2019).
[103] Strohm E M. Berndl E S L, Kolios M C. High frequency label-free photoacoustic microscopy of single cells[J]. Photoacoustics, 1, 49-53(2013).
[104] Dong B Q, Li H, Zhang Z et al. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection[J]. Optica, 2, 169-176(2015).
[105] Hu S, Wang L V. Photoacoustic imaging and characterization of the microvasculature[J]. Journal of Biomedical Optics, 15, 011101(2010).
[106] Zhang X, Qian X Q, Tao C et al. In vivo imaging of microvasculature during anesthesia with high-resolution photoacoustic microscopy[J]. Ultrasound in Medicine & Biology, 44, 1110-1118(2018).
[107] Zhang H F, Maslov K, Li M L et al. In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy[J]. Optics Express, 14, 9317-9323(2006).
[108] Kim J, Kim J Y, Jeon S et al. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers[J]. Light: Science & Applications, 8, 1-11(2019).
[109] Zhang H F, Maslov K, Wang L V. In vivo imaging of subcutaneous structures using functional photoacoustic microscopy[J]. Nature Protocols, 2, 797-804(2007).
[110] Zhang E Z, Laufer J G, Pedley R B et al. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy[J]. Physics in Medicine and Biology, 54, 1035-1046(2009).
[112] Jeon S, Song H B, Kim J et al. In vivo photoacoustic imaging of anterior ocular vasculature: a random sample consensus approach[J]. Scientific Reports, 7, 4318(2017).
[113] Yao J J, Maslov K I, Zhang Y et al. Label-free oxygen-metabolic photoacoustic microscopy in vivo[J]. Journal of Biomedical Optics, 16, 076003(2011).
[116] Weber J, Beard P C, Bohndiek S E. Contrast agents for molecular photoacoustic imaging[J]. Nature Methods, 13, 639-650(2016).
[117] Homan K A, Souza M, Truby R et al. Silvernanoplate contrast agents for in vivo molecular photoacoustic imaging[J]. ACS Nano, 6, 641-650(2012).
[118] Kim C, Favazza C, Wang L V. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths[J]. Chemical Reviews, 110, 2756-2782(2010).
[119] Kim C, Cho E C, Chen J Y et al. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages[J]. ACS Nano, 4, 4559-4564(2010).
[120] Guo B, Chen J Q, Chen N B et al. High-resolution 3D NIR-II photoacoustic imaging of cerebral and tumor vasculatures using conjugated polymer nanoparticles as contrast agent[J]. Advanced Materials, 31, 1808355(2019).
[121] Cui L Y, Rao J H. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes[J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9, e1418(2017).
[122] de la Zerda A, Liu Z, Bodapati S et al. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice[J]. Nano Letters, 10, 2168-2172(2010).
Get Citation
Copy Citation Text
Long Xiaoyun, Tian Chao. Biomedical Photoacoustic Microscopy: Advances in Technology and Applications[J]. Chinese Journal of Lasers, 2020, 47(2): 207016
Category: biomedical photonics and laser medicine
Received: Oct. 8, 2019
Accepted: --
Published Online: Feb. 21, 2020
The Author Email: Chao Tian (ctian@ustc.edu.cn)