NUCLEAR TECHNIQUES, Volume. 47, Issue 12, 120502(2024)

SSA-XGBoost model based high-precision density prediction method for well logging

Rui LI and Wensheng WU*
Author Affiliations
  • College of Geophysics, China University of Petroleum (Beijing), Beijing 102249, China
  • show less
    Figures & Tables(12)
    Structural diagram of SSA-XGBoost density prediction mode
    Model diagram of the dual detector density logging tool
    Density prediction result comparison of SSA-XGBoost parameter optimization with XGBoost (color online)
    Model error comparison of SSA-XGBoost hyperparameter optimization with XGBoost (color online)
    Comparison of simulation density prediction results of different models (color online)
    Taylor plot of model performance comparison (color online)
    Comparison of measured data processing (color online)
    • Table 1. Parameters of the instrument model

      View table
      View in Article

      Table 1. Parameters of the instrument model

      参数Parameters规格Instructions
      伽马源Gamma ray source137Cs,能量Energy: 0.662 MeV
      探测器类型Detector types近探头Near detector: NaI,远探头Far detector: NaI
      源距Sonde-to-source spacing近源距Near space: 19 cm,远源距Far space: 39 cm
      仪器设计Instrument design直径Diameter: 6 cm,长度Length: 55 cm
    • Table 2. Statistical error of count rates for different detector

      View table
      View in Article

      Table 2. Statistical error of count rates for different detector

      密度

      Density / g∙cm-3

      短探头计数率Near detector count rates短探头统计误差Near detector statistical error / %长探头计数率Far detector count rates长探头统计误差Far detector statistical error / %
      2.003.063×10-80.623.839×10-101.16
      2.302.801×10-80.682.155×10-101.21
      2.652.497×10-80.751.120×10-101.27
      2.872.352×10-80.807.874×10-111.33
      3.012.256×10-80.825.274×10-111.47
    • Table 3. Statistical analysis of processed data

      View table
      View in Article

      Table 3. Statistical analysis of processed data

      编号

      Number

      孔隙度范围

      Porosity / P.U.

      孔隙流体

      Pore fluid

      密度范围

      Density range / g∙cm-3

      K10~40H2O2.36~2.71
      K20~40H2O2.00~2.68
      K30~40H2O2.11~2.94
      K40~40H2O2.24~2.83
      K50~40H2O2.06~2.88
      K60~40H2O2.15~2.87
      K70~40H2O2.21~2.98
      K80~40H2O2.14~3.01
      K90~40H2O2.25~2.95
      K100~40H2O2.41~2.96
    • Table 4. Results of parameter optimization

      View table
      View in Article

      Table 4. Results of parameter optimization

      模型

      Model

      最大迭代次数

      Maximum iterations

      学习率

      Learning rate

      树的深度

      Tree depth

      SSA-XGBoost900.918 26
      XGBoost810.954 611
    • Table 5. Evaluation metrics for different models

      View table
      View in Article

      Table 5. Evaluation metrics for different models

      模型ModelSSA-XGBoostSpine-ribs PlotXGBoostSSA-LSTMSSA-RFRSSA-SVR
      MAE0.017 40.028 40.031 40.033 00.072 10.045 9
      RMSE0.020 60.034 60.036 50.038 20.083 40.053 0
      SD0.061 30.068 20.074 40.078 90.097 50.083 5
      R20.948 50.818 20.644 80.749 9-0.191 40.518 7
    Tools

    Get Citation

    Copy Citation Text

    Rui LI, Wensheng WU. SSA-XGBoost model based high-precision density prediction method for well logging[J]. NUCLEAR TECHNIQUES, 2024, 47(12): 120502

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: NUCLEAR PHYSICS, INTERDISCIPLINARY RESEARCH

    Received: Apr. 25, 2024

    Accepted: --

    Published Online: Jan. 15, 2025

    The Author Email: WU Wensheng (WUWensheng)

    DOI:10.11889/j.0253-3219.2024.hjs.47.120502

    Topics