Acta Optica Sinica, Volume. 43, Issue 12, 1228010(2023)

Lightweight Residual Network Based on Depthwise Separable Convolution for Hyperspectral Image Classification

Rongjie Cheng1, Yun Yang1,2、*, Longwei Li1, Yanting Wang1, and Jiayu Wang1
Author Affiliations
  • 1School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China
  • 2Key Laboratory of Disaster Mechanism and Prevention of Mine Geological Disasters, Ministry of Natural Resources, Xi'an 710054, Shaanxi, China
  • show less
    References(25)

    [1] Du P J, Xia J S, Xue Z H et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 20, 236-256(2016).

    [2] Tong Q X, Zhang B, Zhang L F. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 20, 689-707(2016).

    [3] Hu J, Zhang Y, Xie S Y. Summary of research progress on application of domestic remote sensing image classification technology[J]. Computer Engineering and Applications, 57, 1-13(2021).

    [4] Wang B, Fan D L. Research progress of deep learning in classification and recognition of remote sensing images[J]. Bulletin of Surveying and Mapping, 99-102, 136(2019).

    [5] Yang Y, Li L W, Gao S Y et al. Objects detection from high-resolution remote sensing imagery using training-optimized YOLOv3 network[J]. Laser&Optoelectronics Progress, 58, 1601002(2021).

    [6] Fu W F, Zou W B. Review of remote sensing image classification based on deep learning[J]. Application Research of Computers, 35, 3521-3525(2018).

    [7] Wang Z W, Sun J J, Yu Z Y et al. Review of remote sensing image classification based on support vector machine[J]. Computer Science, 43, 11-17, 31(2016).

    [8] Zhang H K, Li Y, Jiang Y N. Deep learning for hyperspectral imagery classification: the state of the art and prospects[J]. Acta Automatica Sinica, 44, 961-977(2018).

    [9] Liu D W, Han L, Han X Y. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 36, 0428001(2016).

    [10] Chen Y S, Lin Z H, Zhao X et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2094-2107(2014).

    [11] Makantasis K, Karantzalos K, Doulamis A et al. Deep supervised learning for hyperspectral data classification through convolutional neural networks[C], 4959-4962(2015).

    [12] Li Y, Zhang H K, Shen Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 9, 67(2017).

    [13] Li Z Q, Zhu R F, Gao F et al. Hyperspectral remote sensing image classification based on three-dimensional convolution neural network combined with conditional random field optimization[J]. Acta Optica Sinica, 38, 0828001(2018).

    [14] Zhang H K, Li Y, Zhang Y Z et al. Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network[J]. Remote Sensing Letters, 8, 438-447(2017).

    [15] Roy S K, Krishna G, Dubey S R et al. HybridSN: exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 17, 277-281(2020).

    [16] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [17] Lee H, Kwon H. Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 26, 4843-4855(2017).

    [18] Liu B, Yu X C, Zhang P Q et al. Deep 3D convolutional network combined with spatial-spectral features for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 48, 53-63(2019).

    [19] Deng Z Q, Wang Y, Zhang B et al. Hyperspectral image classification based on multi-scale feature fusion residual network[J]. Laser&Optoelectronics Progress, 59, 1810014(2022).

    [20] Chen W H, He J, Liu G. Hyperspectral image classification based on convolution neural network with attention mechanism[J]. Laser&Optoelectronics Progress, 59, 1811001(2022).

    [21] Gao H, Tian Y L, Xu F Y et al. Survey of deep learning model compression and acceleration[J]. Journal of Software, 32, 68-92(2021).

    [24] Liu Q C, Xiao L, Liu F et al. SSCDenseNet: a spectral-spatial convolutional dense network for hyperspectral image classification[J]. Acta Electronica Sinica, 48, 751-762(2020).

    [25] Li W M, Chen H H, Liu Q et al. Attention mechanism and depthwise separable convolution aided 3DCNN for hyperspectral remote sensing image classification[J]. Remote Sensing, 14, 2215(2022).

    Tools

    Get Citation

    Copy Citation Text

    Rongjie Cheng, Yun Yang, Longwei Li, Yanting Wang, Jiayu Wang. Lightweight Residual Network Based on Depthwise Separable Convolution for Hyperspectral Image Classification[J]. Acta Optica Sinica, 2023, 43(12): 1228010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Oct. 19, 2022

    Accepted: Dec. 12, 2022

    Published Online: Jun. 20, 2023

    The Author Email: Yang Yun (yangyunbox@chd.edu.cn)

    DOI:10.3788/AOS221848

    Topics