Acta Optica Sinica, Volume. 43, Issue 12, 1228010(2023)

Lightweight Residual Network Based on Depthwise Separable Convolution for Hyperspectral Image Classification

Rongjie Cheng1, Yun Yang1,2、*, Longwei Li1, Yanting Wang1, and Jiayu Wang1
Author Affiliations
  • 1School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China
  • 2Key Laboratory of Disaster Mechanism and Prevention of Mine Geological Disasters, Ministry of Natural Resources, Xi'an 710054, Shaanxi, China
  • show less
    Figures & Tables(15)
    Structure of depthwise separable convolution
    Residual structure in the model of Ref. [16]
    Depthwise separable convolution dotted shortcuts structure
    Depthwise separable convolution identity shortcuts structure
    Proposed network structure
    Classification accuracy of attenuation parameters with different weights
    Classification accuracy of different batchsize
    Classification accuracy of proposed model with different convolution kernel sizes
    Classification results of different models on the Indian Pines dataset. (a) Ground truth; (b) 3DCNN-DSC; (c) 2D-Res-CNN;(d) 3D-Res-CNN; (e) Res14; (f) DSC-Res14
    Classification results of different models on the Pavia University dataset. (a) Ground truth; (b) 3DCNN-DSC; (c) 2D-Res-CNN; (d) 3D-Res-CNN; (e) Res14; (f) DSC-Res14
    • Table 1. Category No. and sample size in Indian Pines dataset

      View table

      Table 1. Category No. and sample size in Indian Pines dataset

      No.CategorySample sizeNo.CategorySample size
      1Alfalfa469Oats20
      2Corn-notill142810Soybean-notill972
      3Corn-mintill83011Soybean-mintill2455
      4Corn23712Soybean-clean593
      5Grass-pasture48313Wheat205
      6Grass-trees73014Woods1265
      7Grass-pasture-mowed2815Buildings-grass-trees-drives386
      8Hay-windrowed47816stone-steel-towers93
    • Table 2. Category No. and sample size in Pavia University dataset

      View table

      Table 2. Category No. and sample size in Pavia University dataset

      No.CategorySample sizeNo.CategorySample size
      1Asphalt66316Bare soil5029
      2Meadows186497Bitumen1330
      3Gravel20998Self-blocking bricks3682
      4Trees30649Shadows947
      5Painted metal sheets1345
    • Table 3. Comparison of Conv parameter, parameter number, FLOPs, and training time of each network

      View table

      Table 3. Comparison of Conv parameter, parameter number, FLOPs, and training time of each network

      Model3DCNN-DSC2D-Res-CNN3D-Res-CNNRes14DSC-Res14
      Conv parameter20022861184011142415223220482
      Parameter number200228611840136016281272149522
      FLOPs /106206229134750
      Time(IP)/s300.3021.321165.101170.32394.71
      Time(PU)/s1913.0025.97997.121830.24641.63
    • Table 4. Comparison of classification accuracy of different algorithms on the Indian Pines test set

      View table

      Table 4. Comparison of classification accuracy of different algorithms on the Indian Pines test set

      No.3DCNN-DSC2D-Res-CNN3D-Res-CNNRes14DSC-Res14
      192.3169.8161.61100.0096.92
      291.2295.1897.5299.0899.21
      397.4190.5896.4999.5699.36
      497.5989.7598.6299.7299.45
      598.4198.8598.5899.5399.23
      698.9599.2997.5099.1999.28
      7100.0067.7863.36100.00100.00
      895.9696.1599.31100.00100.00
      980.0069.1758.3396.0394.67
      1098.9094.9897.0599.9799.71
      1197.8691.6792.3799.3399.50
      1289.6296.9291.2599.7199.47
      1398.8099.1098.16100.00100.00
      1498.8297.8198.7599.9799.75
      1599.3393.7498.9999.9199.49
      1689.7494.3153.5498.5698.41
      OA96.4684.4196.0999.5199.46
      AA95.3190.3287.5999.4199.03
      Kappa95.9693.6195.5399.1099.38
    • Table 5. Comparison of classification accuracy of different algorithms on the Pavia University test set

      View table

      Table 5. Comparison of classification accuracy of different algorithms on the Pavia University test set

      No.3DCNN-DSC2D-Res-CNN3D-Res-CNNRes14DSC-Res14
      195.5293.0898.1799.7199.77
      299.9297.7599.1699.9399.83
      3100.0087.5199.5599.6299.54
      499.7599.1998.1398.3798.92
      599.8299.9599.83100.0099.47
      692.4995.1499.9899.9899.98
      797.8693.2398.2599.5799.47
      894.7383.6696.6098.3899.31
      999.7397.8099.0599.1898.68
      OA97.6594.9098.7999.6199.65
      AA97.7594.1598.7599.4299.44
      Kappa96.9093.2398.3999.4999.53
    Tools

    Get Citation

    Copy Citation Text

    Rongjie Cheng, Yun Yang, Longwei Li, Yanting Wang, Jiayu Wang. Lightweight Residual Network Based on Depthwise Separable Convolution for Hyperspectral Image Classification[J]. Acta Optica Sinica, 2023, 43(12): 1228010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Oct. 19, 2022

    Accepted: Dec. 12, 2022

    Published Online: Jun. 20, 2023

    The Author Email: Yang Yun (yangyunbox@chd.edu.cn)

    DOI:10.3788/AOS221848

    Topics