Photonics Research, Volume. 10, Issue 2, 280(2022)
Ultra-sensitive Dirac-point-based biosensing on terahertz metasurfaces comprising patterned graphene and perovskites
[1] H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).
[2] S. Han, M. V. Rybin, P. Pitchappa, Y. K. Srivastava, Y. S. Kivshar, R. Singh. Guided-mode resonances in all-dielectric terahertz metasurfaces. Adv. Opt. Mater., 8, 1900959(2020).
[3] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).
[4] C. X. Liu, F. Yang, X. J. Fu, J. W. Wu, L. Zhang, J. Yang, T. J. Cui. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals. Adv. Opt. Mater., 9, 2100932(2021).
[5] T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, R. Singh. Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing. Adv. Mater., 33, 2100836(2021).
[6] T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, X. Wu. Nonlinear THz-nano metasurfaces. Adv. Func. Mater., 31, 2100463(2021).
[7] J. Li, C. Zheng, J. Li, G. Wang, J. Liu, Z. Yue, X. Hao, Y. Yang, F. Li, T. Tang, Y. Zhang, Y. Zhang, J. Yao. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface. Photon. Res., 9, 1939-1947(2021).
[8] Q. Li, M. Gupta, X. Zhang, S. Wang, T. Chen, R. Singh, J. Han, W. Zhang. Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials. Adv. Mater. Technol., 5, 1900840(2020).
[9] S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, B. Min. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater., 11, 936-941(2012).
[10] W. He, M. Tong, Z. Xu, Y. Hu, X. A. Cheng, T. Jiang. Ultrafast all-optical terahertz modulation based on an inverse-designed metasurface. Photon. Res., 9, 1099-1108(2021).
[11] G. Rui, H. Hu, M. Singer, Y. J. Jen, Q. Zhan, Q. Gan. Symmetric meta-absorber-induced superchirality. Adv. Opt. Mater., 7, 1901038(2019).
[12] J. Y. Suen, K. Fan, W. J. Padilla. A zero-rank, maximum nullity perfect electromagnetic wave absorber. Adv. Opt. Mater., 7, 1801632(2019).
[13] N. Kundtz, D. R. Smith. Extreme-angle broadband metamaterial lens. Nat. Mater., 9, 129-132(2010).
[14] M. Gupta, R. Singh. Terahertz sensing with optimized
[15] R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang, W. Gao, J. Kono, L. Xie, Y. Ying. Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials. ACS Appl. Mater. Interfaces, 12, 40629-40634(2020).
[16] H. M. Silalahi, Y.-P. Chen, Y.-H. Shih, Y.-S. Chen, X.-Y. Lin, J.-H. Liu, C.-Y. Huang. Floating terahertz metamaterials with extremely large refractive index sensitivities. Photon. Res., 9, 1970-1978(2021).
[17] R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, L. Xie, Y. Ying. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures. Biosens. Bioelectron., 188, 113336(2021).
[18] X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, J. Yao. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens. Bioelectron., 126, 485-492(2019).
[19] S. E. Harris, J. E. Field, A. Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64, 1107-1110(1990).
[20] N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater., 8, 758-762(2009).
[21] M. Chen, Z. Xiao, X. Lu, F. Lv, Y. Zhou. Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial. Carbon, 159, 273-282(2020).
[22] J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, J. Yao. Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon, 163, 34-42(2020).
[23] T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, S. Zhang. Electrically tunable slow light using graphene metamaterials. ACS Photon., 5, 1800-1807(2018).
[24] H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, H. Lee. Electrically controllable molecularization of terahertz meta-atoms. Adv. Mater., 30, 1802760(2018).
[25] J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, K. S. Novoselov. Light-induced irreversible structural phase transition in trilayer graphene. Light Sci. Appl., 9, 174(2020).
[26] M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, J. Yao. Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point. Appl. Surf. Sci., 562, 150182(2021).
[27] H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, L. Liang. Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials. Carbon, 184, 400-408(2021).
[28] A. Dimiev, D. V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Sun, J. M. Tour. Layer-by-layer removal of graphene for device patterning. Science, 331, 1168-1172(2011).
[29] J. Feng, W. Li, X. Qian, J. Qi, L. Qi, J. Li. Patterning of graphene. Nanoscale, 4, 4883(2012).
[30] S. Shukla, S.-Y. Kang, S. Saxena. Synthesis and patterning of graphene: strategies and prospects. Appl. Phys. Rev., 6, 021311(2019).
[31] H. Wang, D. H. Kim. Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev., 46, 5204-5236(2017).
[32] A. S. Abhishek Kumar, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, R. Singh. Excitons in 2D perovskites for ultrafast terahertz photonic devices. Sci. Adv., 6, eaax8821(2020).
[33] H. Jing, Y. Zhu, R.-W. Peng, C.-Y. Li, B. Xiong, Z. Wang, Y. Liu, M. Wang. Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion. Nanophotonics, 9, 3323-3333(2020).
[34] M. Abdelsamie, T. Li, F. Babbe, J. Xu, Q. Han, V. Blum, C. M. Sutter-Fella, D. B. Mitzi, M. F. Toney. Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films. ACS Appl. Mater. Interfaces, 13, 13212-13225(2021).
[35] C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, O. D. Jurchescu. Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency. ACS Appl. Mater. Interfaces, 13, 10231-10238(2021).
[36] Y. Wei, T. Ma, J. Chen, M. Zhao, H. Zeng. Metal halide perovskites for optical parametric modulation. J. Phys. Chem. Lett., 12, 3090-3098(2021).
[37] M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, R. Singh. Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices. Adv. Mater., 29, 1605881(2017).
[38] W. Tian, H. Zhou, L. Li. Hybrid organic-inorganic perovskite photodetectors. Small, 13, 1702107(2017).
[39] S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, C. Xu. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 126, 271-278(2018).
[40] M. Yang, L. Liang, Z. Zhang, Y. Xin, D. Wei, X. Song, H. Zhang, Y. Lu, M. Wang, M. Zhang. Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells. Opt. Express, 27, 19520-19529(2019).
[41] J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).
[42] W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, Y. Ying. Terahertz biosensing with a graphene-metamaterial heterostructure platform. Carbon, 141, 247-252(2019).
[43] W. Xu, Y. Huang, R. Zhou, Q. Wang, J. Yin, J. Kono, J. Ping, L. Xie, Y. Ying. Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface. ACS Appl. Mater. Interfaces, 12, 44281-44287(2020).
Get Citation
Copy Citation Text
Xin Yan, Tengteng Li, Guohong Ma, Ju Gao, Tongling Wang, Haiyun Yao, Maosheng Yang, Lanju Liang, Jing Li, Jie Li, Dequan Wei, Meng Wang, Yunxia Ye, Xiaoxian Song, Haiting Zhang, Chao Ma, Yunpeng Ren, Xudong Ren, Jianquan Yao, "Ultra-sensitive Dirac-point-based biosensing on terahertz metasurfaces comprising patterned graphene and perovskites," Photonics Res. 10, 280 (2022)
Category: Surface Optics and Plasmonics
Received: Sep. 24, 2021
Accepted: Nov. 18, 2021
Published Online: Jan. 5, 2022
The Author Email: Haiyun Yao (haiyun1990yao@163.com), Maosheng Yang (2111803010@stmail.ujs.edu.cn), Lanju Liang (lianglanju123@163.com)