Chinese Journal of Lasers, Volume. 49, Issue 16, 1602002(2022)

Microscale Laser Shock Flattening of Ultrasmooth Electronic Copper Foil

Enlan Zhao1,2, Qingqing Wang1,2、*, Haifeng Yang1,2, and Yuxing Peng1,2
Author Affiliations
  • 1School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • 2Jiangsu Collaborative Innovation Center of Intelligent Mining Equipment, Xuzhou 221116, Jiangsu, China
  • show less
    References(34)

    [1] Bordatchev E V, Hafiz A M K, Tutunea-Fatan O R. Performance of laser polishing in finishing of metallic surfaces[J]. The International Journal of Advanced Manufacturing Technology, 73, 35-52(2014).

    [2] Zhong Z W. Recent advances in polishing of advanced materials[J]. Materials and Manufacturing Processes, 23, 449-456(2008).

    [3] Jiang T, Gao S, Tian Z N et al. Fabrication of diamond ultra-fine structures by femtosecond laser[J]. Chinese Optics Letters, 18, 101402(2020).

    [4] Wang S Y, Ma Y W, Li X Y et al. Highly sensitive torsion sensor based on triangular-prism-shaped long-period fiber gratings[J]. Chinese Optics Letters, 19, 041202(2021).

    [5] Temmler A, Liu D, Preußner J et al. Influence of laser polishing on surface roughness and microstructural properties of the remelted surface boundary layer of tool steel H11[J]. Materials & Design, 192, 108689(2020).

    [6] Li Y H, He W F, Zhou L C. The strengthening mechanism of laser shock processing and its application on the aero-engine components[J]. Scientia Sinica Technologica, 45, 1-8(2015).

    [7] Zhu R, Zhang Y K, Sun G F et al. Numerical simulation of residual stress fields in three-dimensional flattened laser shocking of 2024 aluminum alloy[J]. Chinese Journal of Lasers, 44, 0802007(2017).

    [8] Cheng G J, Pirzada D. Characterizations on microscale laser dynamic forming of metal foil[C], 29-35(2008).

    [9] Gao H, Hu Y W, Xuan Y et al. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures[J]. Science, 346, 1352-1356(2014).

    [10] Shen Z B, Gu C X, Liu H X et al. Fabricating three-dimensional array features on metallic foil surface using overlapping laser shock embossing[J]. Optics and Lasers in Engineering, 51, 973-977(2013).

    [11] Wang X, Shen Z B, Gu C X et al. Laser indirect shock micro-embossing of commercially pure copper and titanium sheet[J]. Optics and Lasers in Engineering, 56, 74-82(2014).

    [12] Lu G X, Liu J D, Zhou Y Z et al. Differences in microscale surface contours of metallic targets subjected to laser shock[J]. Optics Communications, 436, 188-191(2019).

    [13] Dai F Z, Geng J, Ren X D et al. Surface roughness control of LY2 aluminum alloy milled surface subjected to laser shock wave planishing processing[J]. Applied Surface Science, 486, 121-127(2019).

    [14] Dai F Z, Zhou J Z, Lu J Z et al. A technique to decrease surface roughness in overlapping laser shock peening[J]. Applied Surface Science, 370, 501-507(2016).

    [15] Liu H, Yang H F, He H D et al. Laser hybrid welding of electronic copper foil and liquid crystal polymer[J]. Chinese Journal of Lasers, 49, 0202010(2022).

    [16] Yang H F, Xiong F, Wang Y et al. Manufacturing profile-free copper foil using laser shock flattening[J]. International Journal of Machine Tools and Manufacture, 152, 103542(2020).

    [17] Zhang B C, Yang H F, Liu H et al. Crystallographic features and microstructure evolution of sandwich warm laser polishing: the case of aluminum foil[J]. Applied Surface Science, 573, 151557(2022).

    [18] Ye C, Liao Y L, Cheng G J. Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160[J]. Advanced Engineering Materials, 12, 291-297(2010).

    [19] Fabbro R, Fournier J, Ballard P et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 68, 775-784(1990).

    [20] Lloyd E C[R]. Accurate characterization of the high-pressure environment(1971).

    [21] Lei Z L, Sun H R, Chen Y B et al. Elimination of rusting layer from high-strength steel surface using different laser cleaning methods[J]. Chinese Journal of Lasers, 46, 0702003(2019).

    [22] Yang H F, Jia L, Liu K et al. High precision complete forming process of metal microstructure induced by laser shock imprinting[J]. The International Journal of Advanced Manufacturing Technology, 108, 143-155(2020).

    [23] Man J X, Yang H F, Wang Y F et al. Study on controllable surface morphology of the micro-pattern fabricated on metallic foil by laser shock imprinting[J]. Optics & Laser Technology, 119, 105669(2019).

    [24] Zhou M, Huang T, Cai L. The novel nanosecond laser micro-manufacturing of three-dimensional metallic structures[J]. Applied Physics A, 90, 293-297(2008).

    [25] Fan Y J[D]. Investigation of micro laser shock peening on the pressure model and impact effects(2011).

    [26] Hu Y, Liu H X, Wang X et al. Formation of nanostructure and nano-hardness characterization on the meso-scale workpiece by a novel laser indirect shock forming method[J]. The Review of Scientific Instruments, 84, 045001(2013).

    [27] Schneider M S, Kad B, Kalantar D H et al. Laser shock compression of copper and copper-aluminum alloys[J]. International Journal of Impact Engineering, 32, 473-507(2005).

    [28] Huang C X, Wang K, Wu S D et al. Deformation twinning in polycrystalline copper at room temperature and low strain rate[J]. Acta Materialia, 54, 655-665(2006).

    [29] An X H, Lin Q Y, Wu S D et al. Significance of stacking fault energy on microstructural evolution in Cu and Cu-Al alloys processed by high-pressure torsion[J]. Philosophical Magazine, 91, 3307-3326(2011).

    [30] Lu J Z, Deng W W, Luo K Y et al. Surface EBSD analysis and strengthening mechanism of AISI304 stainless steel subjected to massive LSP treatment with different pulse energies[J]. Materials Characterization, 125, 99-107(2017).

    [31] Umapathi A, Swaroop S. Residual stress distribution and microstructure of a multiple laser-peened near-alpha titanium alloy[J]. Journal of Materials Engineering and Performance, 27, 2466-2474(2018).

    [32] Nie X F, Li Y H, He W F et al. Micro-scale laser shock peening method and fatigue test of DZ17G directionally solidified superalloy[J]. Rare Metal Materials and Engineering, 47, 3141-3147(2018).

    [33] Nagarajan B, Castagne S, Wang Z K et al. EBSD analysis of plastic deformation of copper foils by flexible pad laser shock forming[J]. Applied Physics A, 121, 695-706(2015).

    [34] Pu T Y, Liu W W, Wang Y L et al. A novel laser shock post-processing technique on the laser-induced damage resistance of 1ω HfO2/SiO2 multilayer coatings[J]. High Power Laser Science and Engineering, 9, e19(2021).

    Tools

    Get Citation

    Copy Citation Text

    Enlan Zhao, Qingqing Wang, Haifeng Yang, Yuxing Peng. Microscale Laser Shock Flattening of Ultrasmooth Electronic Copper Foil[J]. Chinese Journal of Lasers, 2022, 49(16): 1602002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Aug. 24, 2021

    Accepted: Nov. 22, 2021

    Published Online: Jul. 28, 2022

    The Author Email: Qingqing Wang (wangqingqing@cumt.edu.cn)

    DOI:10.3788/CJL202249.1602002

    Topics