Chinese Journal of Liquid Crystals and Displays, Volume. 39, Issue 1, 79(2024)

Pointpillars point cloud detection network based on knowledge distillation and location guidance

Jing ZHAO1,4, Shaobo LI1,2, Jielong GUO2,3、*, Hui YU2,3, Jianfeng ZHANG2,3, and Jie LI2,3
Author Affiliations
  • 1School of Electrical Engineering and Automation,Xiamen University of Technology,Xiamen 361024,China
  • 2Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350108,China
  • 3Quanzhou Institute of Equipment Manufacturing,Haixi Institutes,Chinese Academy of Sciences,Quanzhou 362000,China
  • 4Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Controly,Xiamen 361024,China
  • show less
    Figures & Tables(9)
    Network block diagram
    Positioning guidance classification
    Comparison of network model reasoning speed
    Comparison of average precision of car class
    Comparison of average accuracy of three difficulty levels
    • Table 1. Comparison of 3D detection accuracy(3DR40)of different algorithms in KITTI dataset

      View table
      View in Article

      Table 1. Comparison of 3D detection accuracy(3DR40)of different algorithms in KITTI dataset

      算法数据类型Car(IoU=0.7)Pedestrian(IoU=0.5)Cyclist(IoU=0.5)
      简单中等困难简单中等困难简单中等困难
      两阶段AVOD19L+R83.0771.7665.7336.1027.8625.7657.1942.0838.29
      PointRCNN5L86.9675.6470.7049.4341.7838.6373.9359.6053.59
      UberATG-MMF20L+R88.4077.4370.22N/AN/AN/AN/AN/AN/A
      Part-A221L87.8178.4973.5153.1043.3540.0679.1763.5256.93
      单阶段SECOND18L83.3472.5565.8251.0742.5637.2970.5153.8546.90
      TANet22L84.3975.9468.8253.7244.3440.4975.7059.4452.53
      Associate-3Det23L85.9977.4070.53N/AN/AN/AN/AN/AN/A
      Point-GNN24L88.3378.4772.2951.9243.7740.1478.6063.4857.08
      OursL88.1578.9574.9752.7746.0941.0981.6661.3157.21
    • Table 2. Comparison of BEV detection accuracy(BEVR40)of different algorithms in KITTI dataset

      View table
      View in Article

      Table 2. Comparison of BEV detection accuracy(BEVR40)of different algorithms in KITTI dataset

      算法数据类型Car(IoU=0.7)Pedestrian(IoU=0.5)Cyclist(IoU=0.5)
      简单中等困难简单中等困难简单中等困难
      两阶段AVOD19L+R89.7584.9578.3242.5833.5730.1464.1148.1542.37
      PointRCNN5L92.1387.3982.72N/AN/AN/AN/AN/AN/A
      UberATG-MMF20L+R93.6788.2181.99N/AN/AN/AN/AN/AN/A
      Part-A221L91.7087.7984.4159.0449.8145.9283.4368.7361.85
      单阶段SECOND18L89.3983.7778.5955.1046.2744.7673.6756.0448.78
      TANet22L91.5886.5481.1960.8551.3847.5479.1663.7756.21
      Associate-3Det23L91.4088.0982.96N/AN/AN/AN/AN/AN/A
      Point-GNN24L93.1189.1783.9055.3647.0744.6181.1767.2859.67
      OursL93.0988.8684.5058.4651.8847.4384.1064.0359.82
    • Table 3. Influence of temperature coefficient on model detection accuracy in distillation under ModR40

      View table
      View in Article

      Table 3. Influence of temperature coefficient on model detection accuracy in distillation under ModR40

      τCarPedestrianCyclist
      教师网络74.3141.9251.92
      278.9556.0961.31
      376.3344.5659.89
      475.2243.6758.02
      573.8741.0346.63
    • Table 4. Ablation experiments of regression frame distillation and location-guided classification in KITTI dataset

      View table
      View in Article

      Table 4. Ablation experiments of regression frame distillation and location-guided classification in KITTI dataset

      PGCRBDCar(IoU=0.7)Pedestrian(IoU=0.5)Cyclist(IoU=0.5)
      简单中等困难mAP简单中等困难mAP简单中等困难mAP
      3D××82.5874.3168.9975.2951.4541.9238.8944.0877.1058.6551.9262.55
      ×85.0476.2972.0477.7951.5044.1139.6545.0877.6060.3053.2263.71
      ×88.0877.1074.1279.7752.2845.7940.9746.3577.5859.1755.3764.04
      88.1578.9574.9780.6952.7746.0941.0946.6581.6661.3157.2166.73
      BEV××90.0786.5682.8186.4857.6048.6445.7850.6779.9062.7355.5866.07
      ×91.3787.5282.9588.2857.6450.7346.2751.4582.0563.7660.6270.81
      ×92.5188.5183.9388.3258.8952.6747.8553.1483.3364.2960.5169.38
      93.0988.8684.5088.8258.4651.8847.4352.5984.1064.0359.8269.32
    Tools

    Get Citation

    Copy Citation Text

    Jing ZHAO, Shaobo LI, Jielong GUO, Hui YU, Jianfeng ZHANG, Jie LI. Pointpillars point cloud detection network based on knowledge distillation and location guidance[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(1): 79

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Feb. 17, 2023

    Accepted: --

    Published Online: Mar. 27, 2024

    The Author Email: Jielong GUO (gjl@fjirsm.ac.cn)

    DOI:10.37188/CJLCD.2023-0058

    Topics