Chinese Journal of Lasers, Volume. 48, Issue 2, 0202011(2021)
Research Progress on Laser Processing of Antireflection Surfaces
[1] Tadepalli S, Slocik J M, Gupta M K et al. Bio-optics and bio-inspired optical materials[J]. Chemical Reviews, 117, 12705-12763(2017).
[3] Jin Y, Feng J, Zhang X L et al. Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode[J]. Advanced Materials, 24, 1187-1191(2012).
[4] Li C H, Zhao J H, Yu X Y et al. Fabrication of black silicon with thermostable infrared absorption by femtosecond laser[J]. IEEE Photonics Journal, 8, 1-9(2016).
[5] Liu Y F, An M H, Zhang X L et al. Enhanced efficiency of organic light-emitting devices with corrugated nanostructures based on soft nano-imprinting lithography[J]. Applied Physics Letters, 109, 193301(2016).
[6] Han D D, Chen Z D, Li J C et al. Airflow enhanced solar evaporation based on Janus graphene membranes with stable interfacial floatability[J]. ACS Applied Materials & Interfaces, 12, 25435-25443(2020).
[7] Tan G, Lee J H, Lan Y H et al. Broadband antireflection film with moth-eye-like structure for flexible display applications[J]. Optica, 4, 678-683(2017).
[8] Moghimi M J, Lin G Y, Jiang H R. Broadband and ultrathin infrared stealth sheets[J]. Advanced Engineering Materials, 20, 1800038(2018).
[10] Yao L, He J H, Geng Z et al. Fabrication of mechanically robust, self-cleaning and optically high-performance hybrid thin films by SiO2 & TiO2 double-shelled hollow nanospheres[J]. Nanoscale, 7, 13125-13134(2015).
[11] Kim D S, Jeong Y, Jeong H et al. Triple-junction InGaP/GaAs/Ge solar cells integrated with polymethyl methacrylate subwavelength structure[J]. Applied Surface Science, 320, 901-907(2014).
[12] Raut H K, Dinachali S S, He A Y et al. Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties[J]. Energy & Environmental Science, 6, 1929(2013).
[13] Shi G, Guo J L, Wang L K et al. Photoactive PANI/TiO2/Si composite coatings with 3D bio-inspired structures[J]. New Journal of Chemistry, 41, 6965-6968(2017).
[14] Ko M D, Rim T, Kim K et al. High efficiency silicon solar cell based on asymmetric nanowire[J]. Scientific Reports, 5, 11646(2015).
[17] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).
[18] Zhang Y L, Tian Y, Wang H et al. Dual-3D femtosecond laser nanofabrication enables dynamic actuation[J]. ACS Nano, 13, 4041-4048(2019).
[19] Fang H H, Yang J, Ding R et al. Polarization dependent two-photon properties in an organic crystal[J]. Applied Physics Letters, 97, 101101(2010).
[20] Liu Y Q, Mao J W, Chen Z D et al. Three-dimensional micropatterning of graphene by femtosecond laser direct writing technology[J]. Optics Letters, 45, 113-116(2020).
[21] Wu D, Wu S Z, Niu L G et al. High numerical aperture microlens arrays of close packing[J]. Applied Physics Letters, 97, 031109(2010).
[22] Lapointe J, Bérubé J P, Ledemi Y et al. Nonlinear increase, invisibility, and sign inversion of a localized fs-laser-induced refractive index change in crystals and glasses[J]. Light: Science & Applications, 9, 64(2020).
[23] You R, Liu Y Q, Hao Y L et al. Laser fabrication of graphene-based flexible electronics[J]. Advanced Materials, 32, e1901981(2020).
[24] You R, Han D D, Liu F M et al. Fabrication of flexible room-temperature NO2 sensors by direct laser writing of In2O3 and graphene oxide composites[J]. Sensors and Actuators B: Chemical, 277, 114-120(2018).
[25] Jiang H B, Liu Y, Liu J et al. Moisture-responsive graphene actuators prepared by two-beam laser interference of graphene oxide paper[J]. Frontiers in Chemistry, 7, 464(2019).
[26] Zhang D S, Ranjan B, Tanaka T et al. Carbonized hybrid micro/nanostructured metasurfaces produced by femtosecond laser ablation in organic solvents for biomimetic antireflective surfaces[J]. ACS Applied Nano Materials, 3, 1855-1871(2020).
[27] Roberts A S, Novikov S M, Yang Y Q et al. Laser writing of bright colors on near-percolation plasmonic reflector arrays[J]. ACS Nano, 13, 71-77(2019).
[28] AlQattan B, Yetisen A K, Butt H. Direct laser writing of nanophotonic structures on contact lenses[J]. ACS Nano, 12, 5130-5140(2018).
[29] Vorobyev A Y, Guo C L. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon[J]. Optics Express, 19, A1031-A1036(2011).
[34] Liu Y Q, Chen Z D, Mao J W et al. Laser fabrication of graphene-based electronic skin[J]. Frontiers in Chemistry, 7, 461(2019).
[35] Wu D, Chen Q D, Niu L G et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab on a Chip, 9, 2391-2394(2009).
[36] Fang H H, Ding R, Lu S Y et al. Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals[J]. Advanced Functional Materials, 22, 33-38(2012).
[37] Zou T T, Zhao B, Xin W et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse[J]. Light: Science & Applications, 9, 69(2020).
[38] Sakakura M, Lei Y H, Wang L et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass[J]. Light: Science & Applications, 9, 15(2020).
[39] Liu Z H. Development status and trend of antireflective glass in China[J]. Glass, 46, 1-8(2019).
[41] Lin S H, Zhang J, Ai L et al. Advances in antireflection coatings on photovoltaic glass[J]. Materials Review, 33, 3588-3595(2019).
[42] Raut H K, Ganesh V A, Nair A S et al. Anti-reflective coatings: a critical, in-depth review[J]. Energy & Environmental Science, 4, 3779(2011).
[43] Clapham P B, Hutley M C. Reduction of lens reflexion by the “moth eye” principle[J]. Nature, 244, 281-282(1973).
[44] Brunner R, Sandfuchs O, Pacholski C et al. Lessons from nature: biomimetic subwavelength structures for high-performance optics[J]. Laser & Photonics Reviews, 6, 641-659(2012).
[45] Wilson S J, Hutley M C. The optical properties of ‘moth eye’ antireflection surfaces[J]. Optica Acta: International Journal of Optics, 29, 993-1009(1982).
[47] Ghymn Y H, Jung K, Shin M et al. A luminescent down-shifting and moth-eyed anti-reflective film for highly efficient photovoltaic devices[J]. Nanoscale, 7, 18642-18650(2015).
[50] Han Z W, Jiao Z B, Niu S C et al. Ascendant bioinspired antireflective materials: opportunities and challenges coexist[J]. Progress in Materials Science, 103, 1-68(2019).
[52] Park K C, Choi H J, Chang C H et al. Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity[J]. ACS Nano, 6, 3789-3799(2012).
[53] Kumar A, Yerva S V, Barshilia H C. Broadband and wide angle anti-reflective nanoporous surface on poly (ethylene terephthalate) substrate using a single step plasma etching for applications in flexible electronics[J]. Solar Energy Materials and Solar Cells, 155, 184-193(2016).
[54] Kim S, Jung U T, Kim S K et al. Nanostructured multifunctional surface with antireflective and antimicrobial characteristics[J]. ACS Applied Materials & Interfaces, 7, 326-331(2015).
[55] Fan P X, Bai B F, Zhong M L et al. General strategy toward dual-scale-controlled metallic micro-nano hybrid structures with ultralow reflectance[J]. ACS Nano, 11, 7401-7408(2017).
[56] Sun H B, Kawata S. Two-photon photopolymerization and 3D lithographic microfabrication[M]. //NMR 3D analysis photopolymerization. Apvances in polymer science. Heidelberg: Springer, 170, 169-273(2006).
[57] Xing J F, Zheng M L, Duan X M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery[J]. Chemical Society Reviews, 44, 5031-5039(2015).
[58] Carlotti M, Mattoli V. Functional materials for two-photon polymerization in microfabrication[J]. Small, 15, 1902687(2019).
[61] Li Y, Itoh K, Watanabe W et al. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses[J]. Optics Letters, 26, 1912-1914(2001).
[62] Bonse J, Höhm S, Kirner S V et al. Laser-induced periodic surface structures: a scientific evergreen[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 16516265(2017).
[63] Ahmmed K, Grambow C, Kietzig A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 5, 1219-1253(2014).
[65] Yang J, Luo F F, Kao T S et al. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing[J]. Light: Science & Applications, 3, e185(2014).
[67] Chen T, Wang W J, Tao T et al. Multi-scale micro-nano structures prepared by laser cleaning assisted laser ablation for broadband ultralow reflectivity silicon surfaces in ambient air[J]. Applied Surface Science, 509, 145182(2020).
[68] Papadopoulos A, Skoulas E, Mimidis A et al. Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring[J]. Advanced Materials, 31, e1901123(2019).
[70] Li J R, Xu J K, Lian Z X et al. Fabrication of antireflection surfaces with superhydrophobic property for titanium alloy by nanosecond laser irradiation[J]. Optics & Laser Technology, 126, 106129(2020).
[71] Aydin K, Ferry V E, Briggs R M et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nature Communications, 2, 517(2011).
[72] Fan P X, Bai B F, Long J Y et al. Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface[J]. Nano Letters, 15, 5988-5994(2015).
[73] Chen S F, Chen B L, Huang C Q et al. An antireflection method for a fluorinated ethylene propylene (FEP) film as short pulse laser debris shields[J]. RSC Advances, 6, 89387-89390(2016).
[74] Kok S Y, Tou T Y, Yap S L et al. Pulsed laser interference patterning of polyimide grating for dye-doped polymer laser[J]. Journal of Nanophotonics, 10, 033003(2016).
[75] Rodríguez-Rodríguez Á, Rebollar E, Soccio M et al. Laser-induced periodic surface structures on conjugated polymers: poly(3-hexylthiophene)[J]. Macromolecules, 48, 4024-4031(2015).
[76] Leem J W, Kim S, Lee S H et al. Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned PDMS films[J]. Advanced Energy Materials, 4, 1301315(2014).
[77] Wang W, Liu Y Q, Liu Y et al. Direct laser writing of superhydrophobic PDMS elastomers for controllable manipulation via Marangoni effect[J]. Advanced Functional Materials, 27, 1702946(2017).
[78] Zhang Y L, Ma J N, Liu S et al. A “Yin”-“Yang” complementarity strategy for design and fabrication of dual-responsive bimorph actuators[J]. Nano Energy, 68, 104302(2020).
[79] Zhang Y L, Liu Y Q, Han D D et al. Quantum-confined-superfluidics-enabled moisture actuation based on unilaterally structured graphene oxide papers[J]. Advanced Materials, 31, e1901585(2019).
[80] Han D D, Liu Y Q, Ma J N et al. Biomimetic graphene actuators enabled by multiresponse graphene oxide paper with pretailored reduction gradient[J]. Advanced Materials Technologies, 3, 1800258(2018).
[81] Han D D, Zhang Y L, Ma J N et al. Sunlight-reduced graphene oxides as sensitive moisture sensors for smart device design[J]. Advanced Materials Technologies, 2, 1700045(2017).
[82] Han D D, Zhang Y L, Ma J N et al. Light-mediated manufacture and manipulation of actuators[J]. Advanced Materials, 28, 8328-8343(2016).
[83] Han D D, Zhang Y L, Liu Y et al. Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers[J]. Advanced Functional Materials, 25, 4548-4557(2015).
[84] Han D D, Zhang Y L, Jiang H B et al. Moisture-responsive graphene paper prepared by self-controlled photoreduction[J]. Advanced Materials, 27, 332-338(2015).
[85] Müller-Meskamp L, Kim Y H, Roch T et al. Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning[J]. Advanced Materials, 24, 906-910(2012).
[86] Wang L, Xu B B, Chen Q D et al. Maskless laser tailoring of conical pillar arrays for antireflective biomimetic surfaces[J]. Optics Letters, 36, 3305-3307(2011).
[87] Li Q K, Cao J J, Yu Y H et al. Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing[J]. Optics Letters, 42, 543-546(2017).
[88] Zhang P P, Liao Q H, Yao H Z et al. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one Sun[J]. Journal of Materials Chemistry A, 6, 15303-15309(2018).
[90] Zhang X L, Song J F, Li X B et al. Optical Tamm states enhanced broad-band absorption of organic solar cells[J]. Applied Physics Letters, 101, 243901(2012).
[91] Cho K S, Mandal P, Kim K et al. Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography[J]. Optics Communications, 284, 2608-2612(2011).
[92] Fang C L, Zheng J, Zhang Y J et al. Antireflective paraboloidal microlens film for boosting power conversion efficiency of solar cells[J]. ACS Applied Materials & Interfaces, 10, 21950-21956(2018).
[93] Kang S B, Kim J H, Jeong M H et al. Stretchable and colorless freestanding microwire arrays for transparent solar cells with flexibility[J]. Light: Science & Applications, 8, 121(2019).
[94] Kim J, Chhajed S, Schubert M et al. Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact[J]. Advanced Materials, 20, 801-804(2008).
[95] Bai Y, Feng J, Liu Y F et al. Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation[J]. Organic Electronics, 12, 1927-1935(2011).
[96] Bi Y G, Feng J, Li Y F et al. Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity[J]. Advanced Materials, 25, 6969-6974(2013).
[97] Li C H, Wang X P, Zhao J H et al. Black silicon IR photodiode supersaturated with nitrogen by femtosecond laser irradiation[J]. IEEE Sensors Journal, 18, 3595-3601(2018).
[98] Li C H, Zhao J H, Chen Q D et al. Sub-bandgap photo-response of non-doped black-silicon fabricated by nanosecond laser irradiation[J]. Optics Letters, 43, 1710-1713(2018).
[99] Guo C F, Sun T Y, Cao F et al. Metallic nanostructures for light trapping in energy-harvesting devices[J]. Light: Science & Applications, 3, e161(2014).
[100] Jalil S A, Lai B. ElKabbash M, et al. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices[J]. Light: Science & Applications, 9, 14(2020).
[101] Li J L, Wang X Y, Lin Z H et al. Over 10 kg·m -2 ·h -1 evaporation rate enabled by a 3D interconnected porous carbon foam[J]. Joule, 4, 928-937(2020).
[102] Li W G, Li Z, Bertelsmann K et al. Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis[J]. Advanced Materials, 31, e1900720(2019).
[103] Liu F H, Zhao B Y, Wu W P et al. Low cost, robust, environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation[J]. Advanced Functional Materials, 28, 1803266(2018).
[104] Ren H Y, Tang M, Guan B L et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Advanced Materials, 29, e1702590(2017).
[105] He Z J, Xie X Z, Long J Y. Antireflective copper surfaces fabricated by low-cost nanosecond lasers for efficient photothermal conversion and desalination[J]. Journal of Laser Applications, 31, 022506(2019).
[106] Fan P X, Wu H, Zhong M L et al. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion[J]. Nanoscale, 8, 14617-14624(2016).
[108] Lian Z, Xu J, Yu Z et al. Bioinspired reversible switch between underwater superoleophobicity/superaerophobicity and oleophilicity/aerophilicity and improved antireflective property on the nanosecond laser-ablated superhydrophobic titanium surfaces[J]. ACS Applied Materials & Interfaces, 12, 6573-6580(2020).
[109] Wu D, Wang J N, Wu S Z et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Advanced Functional Materials, 21, 2927-2932(2011).
[114] Mao Z W, Cao W, Hu J et al. A dual-functional surface with hierarchical micro/nanostructure arrays for self-cleaning and antireflection[J]. RSC Advances, 7, 49649-49654(2017).
[115] Domke M, Sonderegger G, Kostal E et al. Transparent laser-structured glasses with superhydrophilic properties for anti-fogging applications[J]. Applied Physics A, 125, 675(2019).
[116] Li J, Zhou Y J, Wang W B et al. Superhydrophobic copper surface textured by laser for delayed icing phenomenon[J]. Langmuir, 36, 1075-1082(2020).
Get Citation
Copy Citation Text
Zhizhen Jiao, Jichao Li, Zhaodi Chen, Dongdong Han, Yonglai Zhang. Research Progress on Laser Processing of Antireflection Surfaces[J]. Chinese Journal of Lasers, 2021, 48(2): 0202011
Category: laser manufacturing
Received: Jul. 30, 2020
Accepted: Sep. 27, 2020
Published Online: Jan. 6, 2021
The Author Email: Zhang Yonglai (yonglaizhang@jlu.edu.cn)