Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1010001(2023)

Road Falling Objects Detection Algorithm Based on Image and Point Cloud Fusion

Haolin Liang, Huaiyu Cai*, Bochong Liu, Yi Wang, and Xiaodong Chen
Author Affiliations
  • Key Laboratory of Photoelectric Information, Ministry of Education, School of Precision Instruments and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(13)
    Flow chart of algorithm for detecting falling objects
    Structure diagram of ResNet-50
    ResNet-50 down-sampling module optimization. (a) Before optimization; (b) after optimization
    Schematic diagram of test vehicle and sensor installation
    Examples of experimental data collection
    Extraction results of road objects. (a) Road edge extraction; (b) ground point cloud filtering; (c) ground point elimination; (d) point cloud clustering
    Mapping result of point cloud region of interest in visual image
    Detection result of scattered objects in a picture
    Prediction result of scattered object image block
    • Table 1. Main equipment parameters used by the system

      View table

      Table 1. Main equipment parameters used by the system

      EquipmentModelParameter
      LidarVelodyne VLP-32C

      Maximum measuring range 200 m

      Field of view 360°(H)×40°(V,-25°-15°)

      Vertical resolution minimum 0.33°

      Horizontal resolution 0.1-0.4°

      CameraDaHua 5131M/CU210

      Resolution 1280×1024

      Pixel size 4.8 μm×4.8 μm

      Maximum frame rate 210 frame/s

      CMOS target surface size 1/2''

      GNSSMG910

      Centimeter-level positioning

      Maximum output frequency 20 Hz

      IMUIMU560Maximum output frequency 100 Hz
      Industrial PCDT-S2010MB-YH310MC4L

      CPU:Intel i7-8700

      RAM 16 GB

      2 TB mechanical hard disk+128 GB SSD

    • Table 2. Experimental results of scattered objects detection algorithm

      View table

      Table 2. Experimental results of scattered objects detection algorithm

      Total number of road objectsTotal number of falling objectsPredicted number of falling objectsNumber of falling objects predicted to be trueUnpredictable number of falling objectsPredicted number of falling objects that are falsePrecision /%Recall /%
      783260252239211394.8491.92
    • Table 3. Detection of falling objects of different sizes

      View table

      Table 3. Detection of falling objects of different sizes

      Scattered object size /cmActual numberNumber of correctly detectedRecall /%
      <1017635.29
      10-3019118194.76
      >305252100.00
    • Table 4. Comparison of prediction results before and after network structure optimization

      View table

      Table 4. Comparison of prediction results before and after network structure optimization

      Evaluation indexBefore optimizationAfter optimizationImprovement
      Precision /%93.4194.841.43
      Recall /%90.9091.921.02
    Tools

    Get Citation

    Copy Citation Text

    Haolin Liang, Huaiyu Cai, Bochong Liu, Yi Wang, Xiaodong Chen. Road Falling Objects Detection Algorithm Based on Image and Point Cloud Fusion[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 24, 2021

    Accepted: Jan. 28, 2022

    Published Online: May. 17, 2023

    The Author Email: Huaiyu Cai (hycai@tju.edu.cn)

    DOI:10.3788/LOP213044

    Topics