Laser & Optoelectronics Progress, Volume. 62, Issue 5, 0504001(2025)

An Improved Dark Current Testing Method for Encapsulated Dewar Infrared Detectors

Yanming Zhang1,2、*, Xinrong Wen2, Wenlong Fan3, and Chun Xu2
Author Affiliations
  • 1College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, Zhejiang , China
  • 2Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
  • 3Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    Figures & Tables(20)
    Schematic of detector assembly structure
    Schematic of temperature control assembly
    Detector response at ambient temperature of 285.5 K
    Detector response at ambient temperature of 299.0 K
    Multiple groups Rblackbody(T1) and S1 fit straight lines at 285.5 K, longitudinal axis intercept is S2
    Multiple groups Rblackbody(T1) and S1 fit straight lines at 299.0 K, longitudinal axis intercept is S2
    Multiple groups S2 and R(T2) fit straight line, longitudinal axis intercept is Idark
    Histogram of pixel dark current horizontal distribution
    Dark current image measured with blackbody method
    Platinum resistance temperature monitored at reflector mirror
    Response curves of the pixel at different window temperatures
    Dark current level of the pixel
    Histogram of pixel dark current horizontal distribution
    Dark current image measured with improved method
    • Table 1. Parameters for Eq.(4) calculations

      View table

      Table 1. Parameters for Eq.(4) calculations

      S1(285.5 K) /(e-·s-1S1(299.0 K) /(e-·s-1RblackbodyT1) /(photon·s-1
      75.1481.29672.94 (303.2 K)
      130.17151.933719.35 (323.2 K)
      317.54346.9011754.09 (338.2 K)
    • Table 2. Parameters for Eq. (5) calculations

      View table

      Table 2. Parameters for Eq. (5) calculations

      S2 /(e-·s-1RT2) /(photon·s-1
      24.11 (285.5 K)121.61 (285.5 K)
      28.09 (299.0 K)456.61 (299.0 K)
    • Table 3. Dark current measured with blackbody method

      View table

      Table 3. Dark current measured with blackbody method

      ItemDark current /(e-·s-1
      Mean27.05
      Median27.01
    • Table 4. Parameters for Eq(7) calculations

      View table

      Table 4. Parameters for Eq(7) calculations

      S3 /(e-·s-1RT) /(photon·s-1
      24.00 (279.9 K)68.05 (279.9 K)
      23.42 (275.2 K)40.65 (275.2 K)
      21.26 (272.7 K)30.77 (272.7 K)
      19.87 (268.2 K)18.41 (268.2 K)
      18.34 (263.4 K)10.50 (263.4 K)
    • Table 5. Dark current measured with improved method

      View table

      Table 5. Dark current measured with improved method

      ItemDark current /(e-·s-1
      Mean16.95
      Median16.93
    • Table 6. Comparison of dark currents measured by two methods

      View table

      Table 6. Comparison of dark currents measured by two methods

      MethodDark current /(e-·s-1
      Blackbody method27.05
      Improved method16.95
    Tools

    Get Citation

    Copy Citation Text

    Yanming Zhang, Xinrong Wen, Wenlong Fan, Chun Xu. An Improved Dark Current Testing Method for Encapsulated Dewar Infrared Detectors[J]. Laser & Optoelectronics Progress, 2025, 62(5): 0504001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Detectors

    Received: May. 20, 2024

    Accepted: Jul. 29, 2024

    Published Online: Mar. 10, 2025

    The Author Email:

    DOI:10.3788/LOP241323

    Topics