Semiconductor Optoelectronics, Volume. 46, Issue 3, 493(2025)
Growth of freestanding AlSb nanowires on Si substrates via molecular beam epitaxy and their characterization
[1] [1] Fonash S J. Solar Cell Device Physics[M]. Amsterdam: Elsevier, 2010.
[2] [2] Yee J H, Swierkowski S P, Sherohman J W. AlSb as a high-energy photon detector[J]. IEEE Transactions on Nuclear Science, 1977, 24(4): 1962-1967.
[3] [3] Allred W P, Mefferd W L, Willardson R K. The preparation and properties of aluminum antimonide[J]. Journal of the Electrochemical Society, 1960, 107(2): 117-122.
[4] [4] Lordi V, berg D, Erhart P, et al. First principles calculation of point defects and mobility degradation in bulk AlSb for radiation detection application[J]. Proc. SPIE, 2007: 67060O.
[5] [5] Chang C A, Takaoka H, Chang L L, et al. Molecular beam epitaxy of AlSb[J]. Applied Physics Letters, 1982, 40(11): 983-985.
[7] [7] Singh T, Bedi R K. Growth and properties of aluminium antimonide films produced by hot wall epitaxy on single-crystal KCl[J]. Thin Solid Films, 1998, 312(1/2): 111-115.
[8] [8] Tang P, Li B, Feng L, et al. Structural, electrical and optical properties of AlSb thin films deposited by pulsed laser deposition[J]. Journal of Alloys and Compounds, 2017, 692: 22-25.
[9] [9] Vaughan E I, Addamane S, Shima D M, et al. High-resistivity semi-insulating AlSb on GaAs substrates grown by molecular beam epitaxy[J]. Journal of Electronic Materials, 2016, 45(4): 2025-2030.
[10] [10] Wen L, Liu L, Liao D, et al. Silver-assisted growth of high-quality InAs1-xSbxnanowires by molecular-beam epitaxy[J]. Nanotechnology, 2020, 31(46): 465602.
[11] [11] Wen L, Pan D, Liao D, et al. Foreign-catalyst-free GaSb nanowires directly grown on cleaved Si substrates by molecular-beam epitaxy[J]. Nanotechnology, 2020, 31(15): 155601.
[12] [12] Wen L, Pan D, Liu L, et al. Large-composition-range pure-phase homogeneous InAs1-xSbxnanowires[J]. The Journal of Physical Chemistry Letters, 2022, 13(2): 598-605.
[13] [13] Li L, Pan D, Xue Y, et al. Near full-composition-range high-quality GaAs1-xSbxnanowires grown by molecular-beam epitaxy[J]. Nano Letters, 2017, 17(2): 622-630.
[14] [14] Yang Z X, Yip S, Li D, et al. Approaching the hole mobility limit of GaSb nanowires[J]. ACS Nano, 2015, 9(9): 9268-9275.
[15] [15] Zhuo R, Wen L, Wang J, et al. Synthesis and optical properties of high-quality ultrathin homogeneous GaAs1−xSbxnanowires[J]. Science China Physics, Mechanics & Astronomy, 2024, 67(12): 127311.
[16] [16] Kuczkowski A, Schulz S, Assenmacher W. Growth of GaSb whiskers by thermal decomposition of a single source precursor[J]. Journal of Materials Chemistry, 2001, 11(12): 3241-3248.
[17] [17] Schulz S, Schwartz M, Kuczkowski A, et al. Self-catalyzed growth of GaSb nanowires at low reaction temperatures[J]. Journal of Crystal Growth, 2010, 312(9): 1475-1480.
[18] [18] Burke R A, Weng X, Kuo M W, et al. Growth and characterization of unintentionally doped GaSb nanowires[J]. Journal of Electronic Materials, 2010, 39(4): 355-364.
[19] [19] Liu L, Pan D, Wen L, et al. High-quality vertically aligned InAs nanowires grown by molecular-beam epitaxy using Ag-In alloy segregation[J]. Nanotechnology, 2023, 34(22): 225701.
[23] [23] Li H, Alradhi H, Jin Z, et al. Novel type-Ⅱ InAs/AlSb core-shell nanowires and their enhanced negative photocurrent for efficient photodetection[J]. Advanced Functional Materials, 2018, 28(8): 1705382.
[24] [24] Kindlund H, Zamani R R, Persson A R, et al. Kinetic engineering of wurtzite and zinc-blende AlSb shells on InAs nanowires[J]. Nano Letters, 2018, 18(9): 5775-5781.
Get Citation
Copy Citation Text
WEN Lianjun, PAN Dong. Growth of freestanding AlSb nanowires on Si substrates via molecular beam epitaxy and their characterization[J]. Semiconductor Optoelectronics, 2025, 46(3): 493
Category:
Received: Jan. 26, 2025
Accepted: Sep. 18, 2025
Published Online: Sep. 18, 2025
The Author Email: